M E 345

Lecture 14

Today, we will:

- Do some review example problems hypothesis testing (one sample)
- Review the pdf module: Two Samples Hypothesis Testing and do some examples

Example: Hypothesis testing

Given: A manufacturer claims that a plastic part is *at least* 6.00 cm long. You test the claim by performing a hypothesis test. You pick 30 parts at random from the assembly line, and carefully measure the length of each one. You calculate $\bar{x} = 6.053$ cm and S = 0.104 cm.

To do: To what confidence level (%) can we claim that the manufacturer's claim is true? **Solution**:

Example: Hypothesis testing

Given: We buy a gadget that is supposed to increase the gas mileage of our car. We take 6 trips *without* the gadget and 6 (nearly identical) trips *with* the gadget. The results:

x_A (mpg without gadget)	x_B (mpg with gadget)	
25.6	26.2	
27.3	27.1	
24.2	24.1	
28.7	29.2	
23.6	24.5	
25.1	24.9	

To do: Determine if there is a statistically significant improvement (increase) in gas mileage.

Solution:

Example: Hypothesis testing

Given: [Continuation of previous example] We buy a gadget that is supposed to increase the gas mileage of our car. We take 6 trips *without* the gadget and 8 trips *with* the gadget. We do not attempt to pair up the tests. The results:

x_A (mpg without gadget)	x_B (mpg with gadget)
25.6	26.2
27.3	27.1
24.2	24.1
28.7	29.2
23.6	24.5
25.1	24.9
	26.5
	25.8

To do: Determine if there is a statistically significant improvement (increase) in gas mileage.

Solution: