M E 345

Professor John M. Cimbala

Lecture 24

Today, we will:

- Do some more example problems op-amps
- Continue reviewing the pdf module: op-amps (active filters, clipping circuits)
- Discuss input and output impedance in more detail

Example: Op-amp circuits

Given: The circuit shown, with

- $R_1 = 20 \text{ k}\Omega$
- $R_2 = 80 \text{ k}\Omega$

The supply voltages to the op-amp are +15 V and -15 V (not shown).

To do:

(*a*) Is this is an *inverting* or a *noninverting* amplifier?

(b) For an *ideal* op-amp, when $V_{in} = 1.50$ V DC, calculate V_n in Volts.

(c) For an *ideal* op-amp, calculate the gain G of the circuit.

(d) For a real op-amp, when $V_{in} = 1.50$ V DC, calculate V_{out} in Volts.

(e) For a *real* op-amp, when $V_{in} = 4.20$ V DC, calculate V_{out} in Volts.

Example: Op-amp circuits

Given: Two voltage input signals, V_1 and V_2 are to be combined to produce an output voltage: $V_0 = 4(3V_1 + V_2)$.

To do: Design a circuit that will produce this output, using only op-amps and resistors. Use *inverting* amplifiers [which deal with noise better than noninverting amplifiers], as will be discussed later. Assume that the only resistors you have are 20 k Ω .

Solution:

Example: Op-amp circuits

Given: The circuit shown to the right.

(a) To do: Calculate V_0 in terms of V_i .

Solution:

(b) To do: Calculate the input impedance of the amplifier.

Solution:

(c) To do: Suppose V_i is supplied by a cheap power supply with an output impedance of 5.0 Ω . The power supply is adjusted to provide exactly 10 V ($V_s = 10$ V). Thus, $V_i = 10$ V when there is *no load* on the supply. Calculate the voltage V_i when this power supply is connected to the above op-amp circuit (i.e., we add a *load* to the power supply).

Since the input impedance of an inverting amplifier op-amp circuit is equal to R_1 , the input impedance here is 10 k Ω . Thus, the equivalent circuit (from the power supply's point of view) is:

