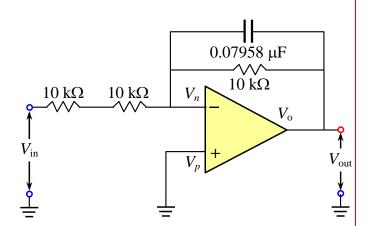
M E 345

Professor John M. Cimbala

Lecture 25

Today, we will:


- Do some more example problems and discussion about op-amp circuits
- Finish reviewing the pdf module: op-amps (miscellaneous properties: GBP, CMRR)

Example: Op-amp circuits

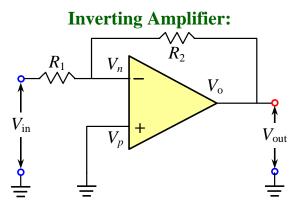
Given: Consider the circuit shown.

(*a*) To do: What kind of circuit is this?

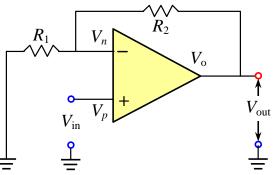
(b) To do: Calculate the output voltage V_{out} when the input voltage is 2.0 V DC.

(c) To do: Calculate the amplitude of the output voltage V_{out} when the input voltage is a pure sine wave with amplitude 1.0 V and frequency 200 Hz.

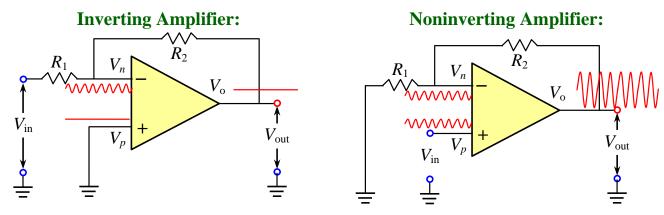
Recall, from last lecture:


In general, we desire our electronic circuits to have *very low output impedance* and *very high input impedance*.

The input impedance of an inverting amplifier op-amp circuit is approximately R_1 .

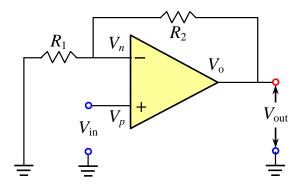

That is one reason why we generally want R_1 to be large (> 1 k Ω as an absolute lower limit).

The output impedance of an inverting amplifier op-amp circuit is small, on the order of 1 Ω .


What about a *noninverting* amplifier? What are the input and output impedances?

Noninverting Amplifier:

Let's compare the amplification of **common mode noise** for *inverting* and *noninverting* amplifiers (common mode noise amplification).


Bottom Line:

- If *input loading* is of primary concern, *noninverting* amplifiers should be used.
- If *noise reduction* and *signal-to-noise issues* are of primary concern, *inverting* amplifiers should be used.

Example: Op-amp circuits with GBP effects

Given: We need to amplify the output of a microphone (music converted into voltage) by a factor of 1000. We construct a noninverting amplifier as sketched, with:

- $\circ R_1 = 1 \ \mathrm{k}\Omega$
- o $R_2 = 999 \text{ k}\Omega$

To do:

(*a*) Calculate the *theoretical* gain of the circuit (at any frequency) if the op-amp were ideal. (*b*) Calculate the *actual* gain for a type 741 op-amp, with GBP = 1.0 MHz at the following frequencies of the music:

- f = 20 Hz (lower limit of human hearing)
- f = 261.63 Hz (middle C)
- o f = 4000 Hz = 4 kHz (a fairly high note)
- o f = 20 kHz (upper limit of human hearing)

(*c*) Suggest a better circuit.

Solution:

Example: Op-amp circuits

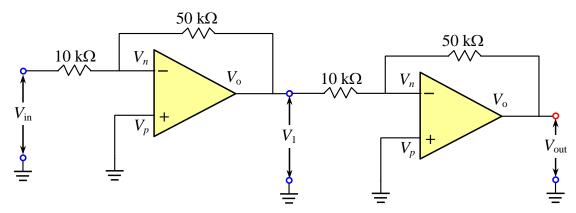
Given: We need to build an amplifier with a theoretical gain of 25 (or -25 - sign does not matter). We use a 741 op-amp with GBP = 1.0 MHz (1000 kHz). The resistors we have on hand are 5 k Ω , 10 k Ω , 20 k Ω , 50 k Ω , 100 k Ω , and 200 k Ω (we have several of each).

(*a*) To do: Draw an electrical circuit that will generate the required gain using a non-inverting amplifier. Repeat for an inverting amplifier.

Solution:

Non-inverting:

Inverting:


(*b*) To do: For the non-inverting case, calculate the overall gain of the amplifier if the signal being amplified has a frequency of 20 kHz. Repeat for the inverting amplifier. **Solution**:

Non-inverting:

Inverting:

(c) To do: For the inverting case, suppose we split up the gain into two stages to reduce the effect of the GBP-filtering. Calculate the overall gain of the amplifier if the signal being amplified has a frequency of 20 kHz.

Solution:

