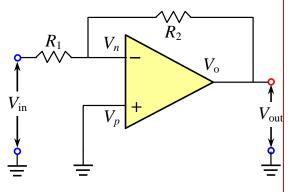
M E 345

Professor John M. Cimbala

Lecture 26


Today, we will:

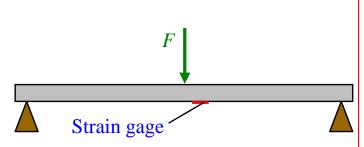
- Do another example problem op-amps with GBP effects.
- Begin the pdf module: Stress, Strain, and Strain Gages, and do some examples.

Example: Op-amp circuit with GBP effects

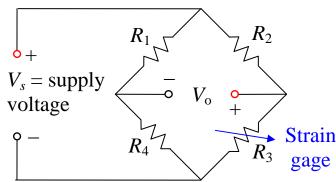
Given: Ben amplifies the voltage output of a microphone by a factor of 1000 using an

inverting amplifier as sketched, with $R_1 = 1.00 \text{ k}\Omega$ and $R_2 = 1.00 \text{ M}\Omega$. The quality of the amplified music sounds odd to Ben, particularly at high frequencies, but he is clueless as to why this is happening. His friend Ashley took M E 345 and remembers something about GBP effects with op-amps. She looks up the specs for Ben's op-amp: GBP_{noninverting} = 0.450 MHz. She explains to Ben that his op-amp is acting like a first-order low-pass filter, and that is why he is losing some of the high frequencies in his music.

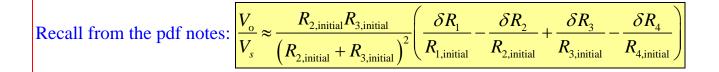
To do:


(*a*) Calculate the internal cutoff frequency of this op-amp circuit.

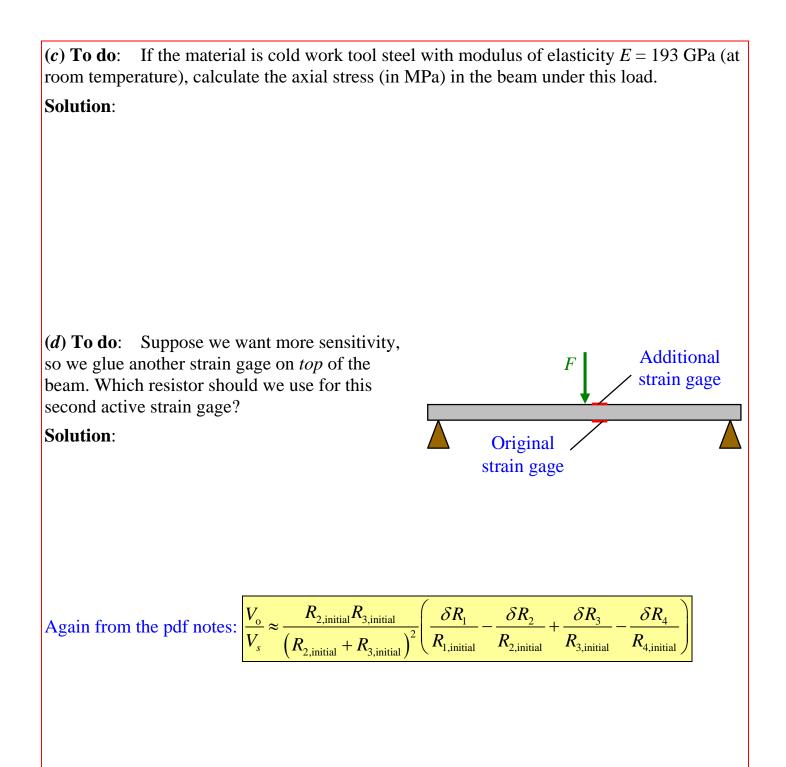
(**b**) Compare the *theoretical* gain and the *actual* gain of this circuit at f = 10,000 Hz.


Solution:

Example: Strain gages


Given: We are measuring the strain on the surface of a beam. The beam's modulus of elasticity is E = 193 GPa. We use one strain gage on the bottom of the beam, as shown; the strain gage factor is S = 2.02. We construct a quarter bridge Wheatstone bridge

circuit, with the strain gage on resistor 3, as sketched below. All resistors, including the strain gage itself (when unloaded) are 120Ω . The supply voltage is 5.00 V DC, and the bridge is initially balanced when there is no load.



(a) To do: Will V_0 be positive or negative when a downward load is added? Solution:

(b) To do: For a loading in which $V_0 = 1.25$ mV, calculate the strain ε_a in units of microstrain.

Solution:

(e) To do: For the setup of Part (d) with the same strain as in Part (b), calculate output voltage V_0 .

Solution: