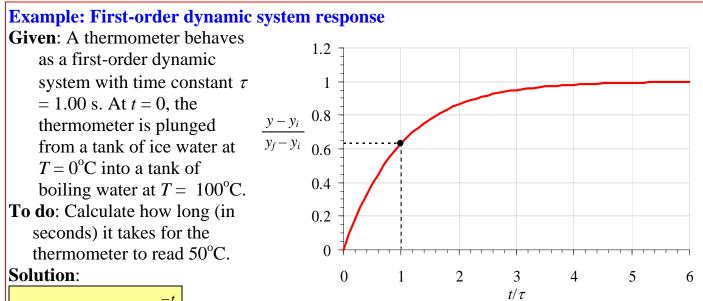
M E 345

Today, we will:


- Review the pdf module: Dynamic System Response (1st-order systems)
- Do some example problems dynamic system response for first-order systems

Example: First-order dynamic system response

Given: A first-order low-pass filter with $R = 100 \text{ k}\Omega$ and $C = 0.010 \text{ }\mu\text{F}$

- (a) To do: Calculate the time constant τ and the static sensitivity K of this system.
- (b) To do: Discuss how time constant τ is related to the cutoff frequency of the filter.
- (c) To do: For a sudden change in input voltage, how long will it take for the nondimensional output to reach 99% of its final value?
- (*d*) To do: If $y_i = 1$ V and $y_f = 3$ V, calculate y when t = 10.0 ms.

Solution:

$$\frac{y - y_i}{y_f - y_i} = 1 - e^{\frac{-t}{\tau}}$$

Example – A practical example of 1st-order dynamic system analysis

Given: A fire has occurred in a hotel room with volume V = 85. m³. Immediately after the fire is extinguished, the mass concentration of hydrogen cyanide (HCN) is $c_i = 10,000$ mg/m³. The firemen blow "fresh" air into the room at $\dot{V} = 28.3$ m³/min. Since there is some smoke outside the building, the "fresh" air actually has an ambient mass concentration of HCN equal $c_a = 1.0$ mg/m³. The air is considered safe when the mass concentration of HCN in the room drops below c = 5 mg/m³.

To do: Calculate how long the firemen need to wait before entering the room.

Solution: Room ventilation is modeled by using a first-order ODE for mass concentration *c* in the room:

$$\frac{dc}{dt} = -\frac{\dot{V}}{V}c + \frac{\dot{V}}{V}c_a$$