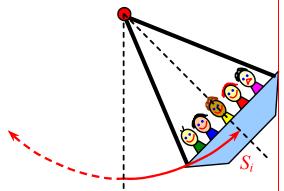
Today, we will:

- Finish the pdf module: Dynamic System Response (response time, log-decrement)
- Do some example problems -2^{nd} -order dynamic systems

Example: Dynamic system response [explicit solution]

Given: A pendulum-type amusement park ride behaves as a 2^{nd} -order dynamic system with damping ratio $\zeta = 0.1$ and $f_n = 0.125$ Hz.

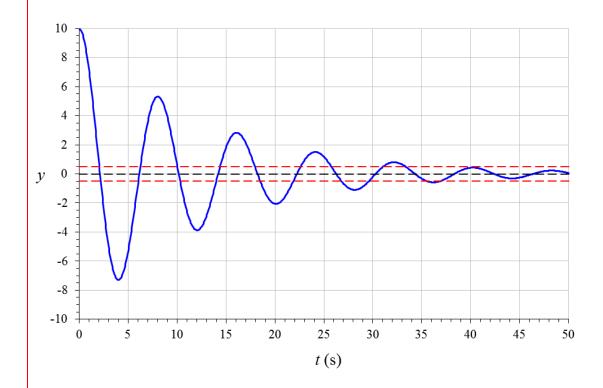
To do: For an initial displacement $S_i = 10.0$ m, calculate the damped natural frequency, the undamped natural frequency, and how long it takes for the oscillations to damp out to within 5% of S_i (the 95% response time).



Solution:

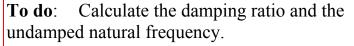
Since we know ζ and f_n , we can plot y or y_{norm} as functions of t or $\omega_n t$, using the equation for underdamped 2^{nd} -order dynamic system response, as given in the learning module,

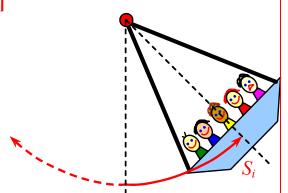
$$y_{\text{norm}} = \frac{y - y_i}{y_f - y_i} = 1 - e^{-\zeta \omega_n t} \left[\frac{1}{\sqrt{1 - \zeta^2}} \sin \left(\omega_n t \sqrt{1 - \zeta^2} + \sin^{-1} \left(\sqrt{1 - \zeta^2} \right) \right) \right]$$



Example: Dynamic system response [implicit solution]

Given: A pendulum-type amusement park ride behaves as a 2^{nd} -order dynamic system. We measure the *actual* (damped) period of the oscillations, $T_d = 7.65 \text{ s}$. We also measure the two peak amplitudes at 4 periods apart, namely, $S_i = 4.740 \text{ m}$ at the first observed peak, when t = 7.65 s, and $S_i = 0.239 \text{ m}$ at a peak four periods later, when t = 38.25 s.

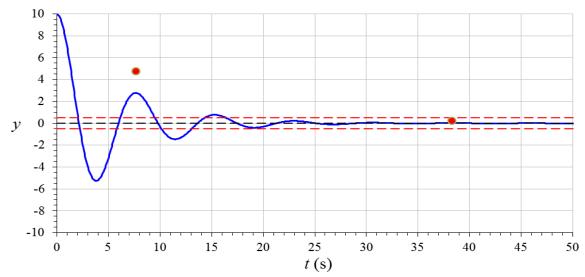




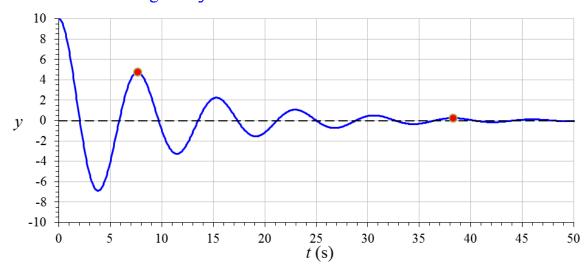
Solution:

Here we do *not* know ζ or ω_n , so this is an implicit solution, involving iteration. To solve graphically, we *guess* ζ , then plot using the equation for underdamped 2nd-order dynamic system response, as given in the learning module. We iterate until we satisfy both of the observed data points. Two cases are shown:

• Initial guess is $\zeta = 0.200$.



• Iterate until converge on $\zeta = 0.118$.



Example: Dynamic system response (second-order, log-decrement method)

Given: Output variable *y* responds like a first-order dynamic system when exposed to a sudden change of input variable *x*. Bill measures the following (oscillatory components) at two peaks, 5 peaks apart from each other:

- $y*_1 = 1.00$ at $t_1 = 0.00$ s.
- $y*_6 = 0.200$ at $t_6 = 0.250$ s.

To do: Use the log-decrement method to calculate the damping ratio of this system.

Solution: Here are the log-decrement equations for your convenience:

$$\ln\left(\frac{y *_{i}}{y *_{i+n}}\right) = n\delta$$

$$\zeta = \frac{\delta}{\sqrt{(2\pi)^{2} + \delta^{2}}}$$

$$\omega_{d} = \frac{2\pi}{T} = 2\pi f_{d}$$

$$\omega_{n} = 2\pi f_{n} = \frac{\omega_{d}}{\sqrt{1 - \zeta^{2}}}$$