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Introduction  
 There are other useful standard distributions and PDFs besides the Gaussian PDF. These include the 

binomial, chi-squared, exponential, gamma, lognormal, Poisson, student’s t, uniform, and Weibull PDFs. 
 We discuss some of these in this learning module, although not in as much detail as for the Gaussian 

(normal) distribution. 
 
Lognormal PDF 

 A lognormal PDF is defined as a PDF that becomes Gaussian when the x-axis is plotted as a log scale.  
o Lognormal PDFs often appear in air quality measurements, e.g., the size distribution of particles. It is 

also useful for some life and durability analyses of components and equipment or instruments. 
o When the PDF is plotted as usual (linear x scale), it is skewed towards the left (lower values), and has a 

very long tail to the right (higher values). This is shown on the first plot below. 
o However, when the PDF is plotted with a logarithmic x scale, all else being equal, it is no longer skewed, 

but becomes symmetric. In fact, it’s bell shape is identical to that of a Gaussian or normal PDF. This is 
shown on the second plot below. 

 

 
 

o Another way to plot lognormal PDFs is to first convert the x values to log10(x) or ln(x), and then plot 
using a linear abscissa scale. Either way, the PDF again looks like a standard Gaussian PDF, as 
illustrated below. 

 

 
 

o To calculate statistics with a lognormal PDF, we substitute either log10(x) or ln(x) as our variable instead 
of x itself. For example, if the data are for particle diameter Dp in units of microns (m), we let our 
statistics variable be x = ln[Dp /(1 m)] instead of Dp itself. All statistics are then based on x as usual. 
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Student’s t PDF 
 A student’s t PDF (also sometimes called simply the t PDF) is similar to the Gaussian (normal) PDF, but 

is used for small sample sizes (typically when n < 30, where n is the number of data points in the sample). 
o In simple terms, when n is small, the sample mean and sample standard deviation may differ from the 

population mean and population standard deviation by some unknown amount. So, for a specified 
confidence level (typically 95%), the student’s t PDF is expected to be wider than the normal (Gaussian) 
PDF.  

o Mathematically, the statistic called student’s t is defined as 
/

x
t

S n


 , where x  is the sample mean, S is 

the sample standard deviation, and n is the number of data points in the sample.  is the population mean 
or expected value, as defined previously, but  is not necessarily known. (This is the whole point of the 
student’s t analysis in the first place – we want to establish some confidence level in predicting .) 

o Statisticians use a parameter called degrees of freedom, with notation df (we do not use italics here so as 
to not confuse df with df, the differential of some variable f). Note that some authors use f or v (lower 
case italic V) as their notation for degrees of freedom. 

o We define degrees of freedom as the number of measurements minus the minimum number of 
measurements necessary to estimate a statistic. For example, it takes only one measurement to estimate 
the mean value of some quantity x. So, df = n – 1 in this case. 

o Example: If we take n = 10 measurements of pipe diameter, and calculate the sample mean, then df = n – 
1 = 10 – 1 = 9. In other words, there are 9 degrees of freedom “left over” after we estimate the mean. [By 
the way, this is the reason we define standard deviation with n – 1 in the denominator instead of n itself, 
because we have already “used up” one degree of freedom to calculate the mean; there are thus n – 1 
degrees of freedom left over to calculate the standard deviation.] 

o Mathematically, the student’s t PDF is defined as  
df 1

2 2

df 1

2
,df 1

df df
df

2

t
f t



  
 

           
 

, 

where  is a standard mathematical function called the gamma function, defined for integers and half-
integers as follows: 

 If y is a whole integer (e.g., 12, 17, 25),       integer 1 ! 1 2 ...(3)(2)(1)y y y y        

You should recall from math class the factorial operation, represented by “!”. 

 if y is a half-integer (e.g., 12.5, 16.5),        half-integer 1 2 ... 3/ 2 1/ 2y y y       

 if y = 1/2,  1/ 2y     

 Examples: (5) = 4! = 4321 = 24. (5.5) = 4.53.52.51.50.5   = 52.3428, where the 
answer is given to 6 significant digits. 

o Like the normal PDF, the student’s t PDF is symmetric about zero, except now we plot the PDF with t 
instead of z as the abscissa. 

o The above equation for the student’s t PDF depends on both t and df, so there is actually a whole family 
of curves representing the student’s t PDF. 

o On the next page, the student’s t PDF f(t,df) is plotted as a function of t for several values of df. On the 
same plot is shown the normal (Gaussian) PDF, f(z) as a function of z. As you can see, as df increases, 
the student’s t PDF approaches the normal PDF. In fact, as df  , the student’s t PDF becomes 
identical to the normal PDF. 
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 Confidence level and level of significance – In order to use the student’s t PDF, we must first review the 

concepts of confidence level and level of significance. 
o Confidence level c is defined as the probability that a random variable lies within a specified range of 

values. The range of values itself is called the 
confidence interval. For example, as discussed 
previously, we are 95.44% confident that a 
purely random variable lies within  two 
standard deviations from the mean (using the 
normal PDF). We state this as a confidence level 
of 95.44%, which we usually round off to 95% 
for practical engineering statistical analysis. 

o Level of significance  is defined as the 
probability that a random variable lies outside 
of a specified range of values. In the above 
example, we are 100 – 95.44 = 4.56% confident 
that a purely random variable lies either below or 
above two standard deviations from the mean. 
(We usually round this off to 5% for practical 
engineering statistical analysis.) 

o Mathematically, confidence level and level of 
significance must add to 1 (or in terms of percentage, to 100%) since they are complementary, i.e., 

1c    or 1c   . 
o Both  and confidence level represent probabilities, or areas under the PDF, as sketched above for the 

student’s t PDF with df = 10 (ten degrees of freedom). 
 

 Estimating the population mean with the student’s t PDF – Here is the procedure for how to use the 
student’s t PDF to estimate the population mean to a desired confidence level: 
o For a specified confidence level, we define the significance level , i.e., 1 c   . 
o The range of t corresponding to this confidence level is –t /2 < t  t /2, as illustrated on the above plot. 
o The probability that t lies within the desired confidence level is  / 2 / 2 1P t t t       . 

o From previously, the t statistic t is defined as 
/

x
t

S n


 . We substitute this into the above probability 

equation, yielding / 2 / 2 1
/

x
P t t

S n
 

  
     
 
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o We multiply by the denominator, yielding / 2 / 2 1
S S

P t x t
n n

   
      
 

. 

o Finally, we subtract x  from all three terms, and multiply all three terms by –1, yielding 

/ 2 / 2 1
S S

P x t x t
n n

  
    

         
    

. 

o We state our final result as follows: / 2

S
x t

n
    with a confidence level of 1 – . 

o In other words, we are confident to a level of c = 1 –  that the true mean (population mean)  lies 
within the calculated range. 

o Unlike the normal PDF, we cannot create one single table for the student’s t PDF, since the PDF is a 
function of both t and df, i.e., f = f(t,df). Instead, for a given confidence level (or for a given level of 
significance ), and for a given number of degrees of freedom, df, we need to calculate t /2. This value 
of t /2 is called the critical value. 

o Excel provides a built-in function called TINV(,df) that calculates the critical value t /2. For example, 
if df = 10 and  = 0.05 (95% confidence level), the critical value is t /2 = TINV(0.05,10) = 2.2281 (to 5 
significant digits), as indicated on the above plot. This also agrees with the value in the table. 

 

 Example: 
Given: We randomly grab pipes off an assembly line, and measure their diameter. We use only 6 pipes in our 

first sample (n = 6). The sample mean is 1.372 cm, and the sample standard deviation is 0.114 cm.  
To do: Estimate the population mean pipe diameter, along with its confidence interval for standard 

engineering (95%) confidence. 
Solution: 
o Since only one measurement is necessary to estimate the mean, df = n – 1 = 6 – 1 = 5.  
o For 95% confidence,  = 1 – 0.95 = 0.05. 
o To calculate t /2, we need to calculate the value of t such that the area under the PDF between t and  is 

equal to  /2 = 0.025. We use Excel’s TINV(,df) function, i.e., t /2 = TINV(0.05,5) = 2.5706. 
o Our estimate for the population mean then becomes 

/ 2

S
x t

n
    = 1.372    0.114

2.5706
6

 = 1.372  0.120 cm. 

o Our final answer is  population mean pipe diameter = 1.372  0.120 cm . 
Discussion: Do not confuse this notation for the final answer with the standard engineering notation for a 

mean with  2 random error (approximately 95% confidence level), as discussed previously. In the 
present problem, we are predicting the population mean value of pipe diameter and its confidence 
interval, not the level of random fluctuations.  

 

 Example: 
Given: From the same pipe assembly line as in the previous example, we grab 6 more pipes at random, and 

measure their diameters. For the combined sample, n = 12. The new x  is 1.367 cm, and S is 0.109 cm.  
To do: Estimate the population mean pipe diameter, along with its confidence interval for standard 

engineering (95%) confidence. 
Solution: 
o The procedure is identical to the previous problem, except that n, x , and S have changed. For  = 0.05 

and df = n – 1 = 12 – 1 = 11, the table gives t /2 = 2.2010. Or, t /2 = TINV(0.05,11) = 2.2010. 
o Our estimate for the population mean then becomes 

/ 2

S
x t

n
    = 1.367    0.109

2.2010
12

 = 1.367  0.069 cm. 

o Our final answer is  population mean pipe diameter = 1.367  0.069 cm . 
Discussion: The confidence interval has decreased significantly (from 0.120 to 0.069) by taking twice as 

many data points in the sample. Obviously, the bigger n is, the smaller the confidence interval (the closer 
we are to the real population mean). 
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 Table of critical values for the student’s t PDF – Finally, for convenience, and when a calculator  or 
computer or is not readily available, we generate a table of the critical values associated with the t PDF. 
o We use Excel’s TINV(,df) function to calculate the critical value t /2 for several values of df and 

confidence levels. The table is shown below. This kind of table appears in most statistics books. 
 

 
 

o The 95% confidence level case ( = 0.05) is highlighted since it is the engineering standard. 
o The last row is for a very large value of df, which we approximate as infinity. 
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The 2 PDF 
 The 2 PDF is used somewhat like the student’s t PDF, except applies to the standard deviation rather than to 

the mean. 
o The student’s t PDF is used to estimate the confidence interval for the population mean, .  
o The 2 PDF is used to estimate the confidence interval for the population variance,   2. [Recall, variance 

is the square of the standard deviation.] 

o Mathematically, the statistic called 2 (chi-squared) is defined as 
 2

2 1
2

n

i
i

x 









, where xi is an 

individual data point, n is the number of data points in the sample,  is the population mean or expected 
value, as defined previously, and  is the population standard deviation. 

o Comparing the above definition to that of the sample variance (square of the sample standard deviation) 

 2

2 1

1

n

i
i

x x
S

n








, we see that there is a 

relationship between 2 and S2, namely, 

 
2

2
2

1
S

n


   [assuming x  ]. 

o Mathematically, the 2 PDF is defined as 

    

 

2df-2 / 22 / 2

2
df / 2

,df
2 df / 2

e
f









, where  is the 

gamma function, defined previously, and df is 
the degrees of freedom, also defined previously. 

o Shown here is a plot of the 2 PDF for several 
values of df, noting that 2 must always be  0: 

o Unlike the normal (Gaussian) or student’s t PDF, 
the 2 PDF is not symmetric – it is skewed. 

 We use the 2 PDF to estimate a confidence interval 
for the population variance, much like we use the student’s t PDF to estimate a confidence interval for the 
population mean. 

o It turns out that the confidence interval for the variance is    
2 2

2
2 2

/ 2 1 / 2

1 1
S S

n n
 


  

    , where  

 2
 /2  is the value of 2 at which the area 

under the PDF is equal to  /2 on one side of 
the PDF. 

 2
1– /2  is the value of 2 at which the area 

under the PDF is equal to  /2 on the other 
side of the PDF. 

o This is illustrated on the PDF shown here for the 
case in which df = 3 (3 degrees of freedom). 

o Just as with the t PDF, we can generate a table 
of critical 2 values as a function of df and . 

o The main difference is that the 2 PDF is not 
symmetric, so we must list on our table two 
critical values – for 2

 /2  and for 2
1– /2. 

o For example, at 95% confidence level,  = 0.05, 
/2 = 0.025, and 1–/2 = 0.975. For df = 3, as in 
the plot, 2

1– /2 = 0.2158 and 2
 /2 = 9.3484. 

o Excel provides a built-in function called CHIINV(probability,df) that calculates the critical values 2
 /2 

and 2
1– /2. For example, if df = 3 and  = 0.05 (95% confidence level), the critical values are 2

1– /2 = 
CHIINV(0.975,3) = 0.2158 and 2

 /2 = CHIINV(0.025,3) = 9.3484, as plotted above. 
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 Table of critical values for the 2 PDF – Finally, for convenience, and when a computer or calculator is not 
readily available, we generate a table of the critical values associated with the 2 PDF. 
o We use Excel’s CHIINV(probability,df) function to calculate critical values 2

 /2 and 2
1– /2 for several 

values of df and confidence levels. The table is shown below. This kind of table appears in most statistics 
books. 

 

 
 

o The 95% confidence level case ( = 0.05) is highlighted since it is the engineering standard. 
o The last row shows that as df gets large, both values of critical 2 approach infinity. 
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 Example: 
Given: [same pipe example data as previously] We randomly grab pipes off an assembly line, and measure 

their diameter. We use only 6 pipes in our first sample (n = 6). The sample mean is 1.372 cm, and the 
sample standard deviation is 0.114 cm.  

To do: Estimate the population standard deviation, along with its confidence interval for standard 
engineering (95%) confidence. 

Solution: 
o First we calculate df = n – 1 = 6 – 1 = 5. [Note: The degrees of freedom is n – 1 for this kind of problem, 

even though we are dealing with standard deviation, and we may have thought to use n – 2. At the time 
of this writing, I am not sure why we use n – 1 instead of n – 2.]   

o For 95% confidence,  = 1 – 0.95 = 0.05, /2 = 0.025, and 1–/2 = 0.975.  
o For df = 5, we read from the above table: 2

1– /2 = 0.8312 and 2
 /2 = 12.8325. Or, we use Excel’s 

CHIINV function: 2
1– /2 = CHIINV(0.975,5) = 0.8312 and 2

 /2 = CHIINV(0.025,5) = 12.8325. 
o Our estimate for the population variance then becomes 

       2 22 2
2 2

2 2
/ 2 1 / 2

0.114 cm 0.114 cm
1 1       5 5

12.8325 0.8312

S S
n n

 

 
  

       which yields 

2 2 20.0005064 cm 0.007818 cm  . 
o Taking the square root of all three values yields the final result, the range of estimated population 

standard deviation, which we write as  0.071 cm 0.280 cm  to 95% confidence. Our best prediction 
of  is of course  = S = 0.114 cm. This is the best we can do based on these few measurements, but now 
at least we have a range and confidence interval for  in addition to this best estimate. 

Discussion: Sample standard deviation S lies within the range calculated for  as it must – if S were outside 
of the calculated range, it would surely be an indication of an algebra error. Note that we give our final 
answer to the same number of decimal places as the original value of S. Any additional digits beyond this 
would not be significant.  

 

 One-tail problems – In many situations in practice when using the 2 PDF, we are concerned with only one 
side or one “tail” of the PDF. For such cases, we need to keep in mind that the confidence levels on the 
above table include both the left and right tails of the PDF. Be careful of factor of 2 errors here. 
o Consider the above example of pipe diameter measurements. We are 95% confident that  lies between 

0.071 and 0.280 cm. But in a manufacturing situation like this, we are not concerned with a  that is “too 
low” – a low  is actually quite desirable (good quality control)! Instead, we worry if  is too high. 

o In other words, we are concerned only with the area to the right of the left-most tail on the PDF, for 
which the probability is 1 – /2 = 1 – 0.05/2 = 0.975. In this case, we are 97.5% confident that our 
population standard deviation is less than 0.280 cm. This is a one-tail statistical analysis. 

 Example: 
Given: The same six pipe measurements of the previous example. The boss wants to be 99% confident that 

the population standard deviation is less than 0.2 cm.  
To do: Estimate how many more pipes need to be measured to satisfy the boss’s request. 
Solution: 
o For a 99% confidence interval, the probability of both tails combined is  = 1 – 0.99 = 0.01. But here, for 

99% confidence outside of one tail only, we set /2 = 0.01, and we are not concerned with the other tail. 

o The right half of the equation for the confidence interval for variance is  
2

2
2
1 / 2

1
S

n



 

  . 

o Setting  to the desired value, we solve for df = n – 1, yielding 
2 2

21 / 2
1 / 22

df 3.0779
S




 


  . 

o There are two unknowns in the above equation (df and 2
1– /2). The table of critical values (or the 

CHINV function) is a second “equation,” using 0.99 as the probability (1–/2 = 1 – 0.01 = 0.99). After 
some iteration, we determine that 13 < df < 14. To be conservative, we choose df = 14. 

o Finally, n = df + 1 = 15, which represents 9 additional measurements beyond the 6 already available. 
Discussion: This is only an estimate, since the actual value of S will change as n is increased. It is critical in 

these kinds of problems to determine whether we are doing a one-tail or two-tail analysis.  
 


