Equation Sheet for ME 405

Print out for homework, quizzes, exams, and future reference.
General and conversions: $g=9.807 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}, \frac{0.3048 \mathrm{~m}}{1 \mathrm{ft}}, \frac{1 \mathrm{mile}}{1.6093 \mathrm{~m}}$,
$\frac{1 \mathrm{~kg}}{2.205 \mathrm{lbm}}, \frac{1 \mathrm{ton}}{2000 \mathrm{lbm}}, \frac{1 \text { tonne (metric ton) }}{1000 \mathrm{~kg}}, \frac{1 \mathrm{~g}}{10^{6} \mu \mathrm{~g}}, \frac{1 \mathrm{~m}}{10^{6} \mu \mathrm{~m}}$,
$\frac{1 \mathrm{kPa} \cdot \mathrm{m}^{2}}{1 \mathrm{kN}}, \frac{1 \mathrm{kN} \cdot \mathrm{m}}{1 \mathrm{~kJ}}, \frac{1 \mathrm{~kW} \cdot \mathrm{~s}}{1 \mathrm{~kJ}}, \frac{1 \mathrm{Btu}}{1.055056 \mathrm{~kJ}}$,

HERP risk: HERP risk $=\frac{N \cdot E S S \cdot H E R P}{H S S}$, where $N=$ number of servings $\quad E S S=$ exposed serving size $H E R P=$ HERP risk from table (\%) $\quad H S S=$ HERP serving size from table
Molecular weights and mols: $m=n M, M_{\text {air }}=28.97 \mathrm{~g} / \mathrm{mol}, M_{\text {water }}=18.02 \mathrm{~g} / \mathrm{mol}$, Avagadro's number: 6.02214×10^{23}.
Air at SATP: $P_{\text {SATP }}=101.325 \mathrm{kPa}, T_{\mathrm{SATP}}=298.15 \mathrm{~K}, \quad \rho=1.184 \mathrm{~kg} / \mathrm{m}^{3}, \mu=1.849 \times 10^{-5} \mathrm{~kg} /(\mathrm{m} \mathrm{s}), \lambda=0.06704 \mu \mathrm{~m}$.
Air at P\&T: $\rho=\frac{P}{R_{\text {air }} T}, \mu \approx \mu_{\mathrm{s}}\left(\frac{T}{T_{\mathrm{s}, 0}}\right)^{3 / 2} \frac{T_{\mathrm{s}, 0}+T_{\mathrm{s}}}{T+T_{\mathrm{s}}}, T_{\mathrm{s}, 0}=298.15 \mathrm{~K}, T_{\mathrm{s}}=110.4 \mathrm{~K}, \mu_{\mathrm{s}}=1.849 \times 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}, \lambda=\frac{\mu}{0.499} \sqrt{\frac{\pi}{8 \rho P}}$
Ideal gas: $P V=n R_{u} T, P=R_{u} / M, P V=m R T, P=\rho R T, R_{u}=8.314 \frac{\mathrm{~kJ}}{\mathrm{kmol} \cdot \mathrm{K}}, R_{\mathrm{air}}=0.287 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}=287.0 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$.
Volume and mass flow rate: $Q=\dot{V}=U A_{c},\left\{\dot{m}=\rho Q=\rho \dot{V}, Q_{\text {standard }}=Q_{\text {actual }} \frac{P}{P_{\text {SATP }}} \frac{T_{\text {SATP }}}{T}, \begin{array}{l}P_{\text {SATP }}=101.325 \mathrm{kPa}=760 \mathrm{~mm} \mathrm{Hg} \\ T_{\text {SATP }}=25^{\circ} \mathrm{C}=298.15 \mathrm{~K}\end{array}\right.$ Ideal gas mixture: $m_{t}=\sum_{j=1}^{J} m_{j}, n_{t}=\sum_{j=1}^{J} n_{j}, \quad P=\sum_{j=1}^{J} P_{j}, V=\sum_{j=1}^{J} V_{j}, f_{j}=\frac{m_{j}}{m_{t}}=y_{j} \frac{M_{j}}{M_{t}}, y_{j}=\frac{n_{j}}{n_{t}}=\frac{P_{j}}{P}=\frac{V_{j}}{V}, M_{j}=\frac{m_{j}}{n_{j}}$,

$$
P V=n_{t} R_{u} T, P_{j} V=n_{j} R_{u} T, P V_{j=n_{j} R_{u} T}, M_{t}=\sum_{j=1}^{J}\left(y_{j} M_{j}\right), c_{j}=\frac{m_{j}}{V}, c_{\text {molar }, j}=\frac{n_{j}}{V}=\frac{c_{j}}{M_{j}}, c_{j}=y_{j} \frac{M_{j}}{R_{u}} \frac{P}{T}, \dot{m}_{j}=c_{j} Q .
$$

Relative humidity \& vapor pressure: $R H=\Phi=\frac{P_{\mathrm{H}_{2} \mathrm{O}}}{P_{v, \mathrm{H}_{2} \mathrm{O}}} \times 100 \%=\frac{P_{\mathrm{H}_{2} \mathrm{O}}}{P_{\mathrm{sat}, \mathrm{H}_{2} \mathrm{O}}} \times 100 \%, y_{\mathrm{H}_{2} \mathrm{O}}=\frac{P_{\mathrm{H}_{2} \mathrm{O}}}{P_{\text {atm }}}, P_{v}=P_{\text {sat }}$ for any VOC.

Dose and dose rate: $D_{\min }=$ dose rate $=(Q c)_{\min }[\mathrm{mg}$ per minute $], D_{t}=$ total dose $=\int_{0}^{T}(Q c) d t[\mathrm{mg}]$
First-order ODE: $\frac{d y}{d t}=B-A y$. For a step function change and constant A and $B, t_{1 / 2}=\frac{-\ln (1 / 2)}{A}=-\ln (1 / 2) \tau, y_{s s}=\frac{B}{A}$, $\tau=1 / A$, and the solution at any time t is $y(t)=y_{s s}-\left[y_{s s}-y(0)\right] \exp (-A t)$.
Mass body burden ODE and solution: $\frac{d m_{b b}}{d t}=F Q c_{\text {inspired }}-k_{r} m_{b b}, m_{b b, s s}=\frac{F Q c_{\text {inspired }}}{k_{r}}, \tau=\frac{1}{k_{r}},, t_{1 / 2}=\frac{-\ln (1 / 2)}{k_{r}}$, and the solution at any time t is $m_{b b}(t)=m_{b b, s s}-\left[m_{b b, s s}-m_{b b}(0)\right] \exp \left(-k_{r} t\right)$.
Exposure parameter for gas mixtures: For J toxins, each with its own PEL: $E_{n}=\sum_{j=1}^{J} \frac{y_{j}}{\mathrm{PEL}_{j}}, E_{n}>1=$ violation.
Hearing and noise: $L_{P}=20 \log _{10}\left(\frac{P}{P_{0}}\right), P_{0}=2 \times 10^{-5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}, L_{W}=10 \log _{10}\left(\frac{W}{W_{0}}\right), W_{0}=1 \times 10^{-12}$ watt,,$r_{0}=1 \mathrm{~m}$,
$L_{P}(r)=L_{W}+10 \log _{10} Q-11.0-20 \log _{10}\left(\frac{r}{r_{0}}\right), Q=1$ (free space), 2 (hard floor), 4 (hard 2-D corner), 8 (hard 3-D corner).
For J sound sources: $\left.L_{P}=10 \log _{10}\left[\sum_{j=1}^{J} 10^{\left(L_{p, j} / 10\right.}\right)\right]$. For J exposures: $E_{n}=\sum_{j=1}^{J} \frac{t_{j}}{t_{j, \text { permitted }}}, E_{n}>1=$ violation.

Mifflin St. Jeor equation for BMR:

$$
\begin{aligned}
& \dot{M}_{b}=\mathrm{BMR}=\left(\frac{10.0 m}{1 \mathrm{~kg}}+\frac{6.25 h}{1 \mathrm{~cm}}-\frac{5.0 a}{1 \mathrm{yr}}+s\right) \frac{\mathrm{kcal}}{\text { day }}=\text { Engr. equation where } \\
& m=\text { mass }[\mathrm{kg}], h=\text { height }[\mathrm{cm}], a=\text { age [yr], } s=+5 \text { male, } s=-161 \text { female }
\end{aligned}
$$

Heat stress: Note: These are engineering equations with units built in. All \dot{Q} values have units of [kcal/min].

$\dot{Q}_{\text {evap,req }}=-\left[\dot{M}+\dot{Q}_{\text {conv }}+\dot{Q}_{\text {res }}+\dot{Q}_{\text {rad }}\right], \dot{Q}_{\text {conv }}=K A_{s}\left(0.0325+0.1066 U_{a}^{0.67}\right)\left(T_{a}-T_{s}\right), \dot{Q}_{\text {rad }}=0.0728 A_{s} K\left(T_{w}-T_{s}\right)$,
$\dot{Q}_{\text {res }}=-\dot{M}\left[0.0014\left(307.15-T_{a}\right)+0.0173\left(5.87-R H_{a} P_{v}\left(\right.\right.\right.$ at $\left.\left.\left.T_{a}\right)\right)\right], \dot{Q}_{\text {evap, max }}=0.198 K A_{s} U_{a}^{0.63}\left[R H_{a} P_{v}\left(\right.\right.$ at $\left.T_{a}\right)-P_{v}\left(\right.$ at $\left.\left.T_{s}\right)\right]$,

with T in $\mathrm{K}, R H$ as a number, not a $\%, T_{w}=\left[T_{G}{ }^{4}+\left(0.248 \times 10^{9} U_{a}{ }^{0.5}\right)\left(T_{G}-T_{a}\right)\right]^{1 / 4}, H S I=\frac{\dot{Q}_{\text {evap,req }}}{\dot{Q}_{\text {evap,max }}} \times 100 \%$.
Note (confusing!): P_{v} in $\mathbf{k P a}$ for $\dot{Q}_{\text {res }}$, but P_{v} in $\mathbf{m m ~ H g}$ for $\dot{Q}_{\text {evap,max }}$. Conversion: $(760 \mathrm{~mm} \mathrm{Hg}) /(101.325 \mathrm{kPa})$.
Emission factors (EPA AP-42): $E F=\frac{\dot{m}_{\text {polluatant }}\left(\text { or } m_{\text {pollutant }}\right)}{\text { some appropriate denominator }}$, $\dot{m}_{\mathrm{d} \text { (discharged) }}=(1-\eta) \dot{m}_{\mathrm{g} \text { (generated) }}$ or $m_{d}=(1-\eta) m_{g}$ where $\eta=$ APCS removal efficiency
Flux chamber: $\frac{d m_{j}}{d t}=V \frac{d c_{j}}{d t}=c_{j, a} Q_{a}+S_{j}-c_{j} Q_{a}, \dot{m}_{j, \text { generated }}=S_{j}=\left(c_{j, s \mathrm{~s}}-c_{j, a}\right) Q_{a}, c_{j, \mathrm{ss}}=c_{j, a}+\frac{S_{j}}{Q_{a}}, \tau=\frac{V}{Q_{a}}$, $t_{1 / 2}=-\ln (1 / 2) \frac{V}{Q_{a}}$, and the solution at any time t is $c_{j}(t)=c_{j, s s}-\left[c_{j, s s}-c_{j}(0)\right] \exp \left(-\frac{Q_{a}}{V} t\right)$.
Tank filling: $m_{j, \text { displaced }}=f \frac{M_{j} P_{v, j}}{R_{u} T} V_{\text {liquid in }}, \dot{m}_{j, \text { displaced }}=f \frac{M_{j} P_{v, j}}{R_{u} T} Q_{\text {liquid in }}$, filling factor $f=\frac{P_{j}}{P_{v, j}}$, Loading factor $L_{r}=\frac{Q_{\text {liquid in }}}{V}$. When a liquid puddle of species k sits at the bottom of a tank being filled with species j, emissions come from both $j \& k$, $\dot{m}_{\text {total }}=\dot{m}_{j, \text { displaced }}+\dot{m}_{k, \text { displaced }}=f_{j} \frac{M_{j} P_{v, j}}{R_{u} T} Q_{\text {liquid in }}+f_{k} \frac{M_{k} P_{v, k}}{R_{u} T} Q_{\text {liquid in }}$, where $f_{j}=\frac{P_{j}}{P_{v, j}} \& f_{k}=\frac{P_{k}}{P_{v, k}}=1$ since k is saturated.
Gradient diffusion of $\boldsymbol{A}: J_{A}=-b \frac{d a}{d z}$, where $a=\frac{A}{V}$ and $A=$ mass, energy, momentum, \ldots. For mass, $M_{j} J_{j}=-D_{a j} \frac{d c_{j}}{d z}$.
$\underline{\text { Evaporation, pure liquid into stagnant air: } y_{j}+y_{a}=1 \text {. For } z_{1} \text { liquid surface and } z_{2}=\text { top of container, }}$
$N_{j}=k_{G}\left(P_{j, 1}-P_{j, 2}\right), k_{G}=\frac{D_{a j} P}{R_{u} T\left(z_{2}-z_{1}\right) P_{a m}}=\frac{D_{a j}}{R_{u} T\left(z_{2}-z_{1}\right) y_{a m}}, y_{a m}=\frac{P_{a m}}{P}, y_{a m}=\frac{y_{a, 2}-y_{a, 1}}{\ln \left(y_{a, 2} / y_{a, 1}\right)}, P_{a m}=\frac{P_{a, 2}-P_{a, 1}}{\ln \left(P_{a, 2} / P_{a, 1}\right)}$, and since $\dot{m}_{j}=\dot{m}_{j, \text { evap }}=N_{j} M_{j} A, \dot{m}_{j}=\dot{m}_{j, \text { evap }}=\frac{D_{a j} P\left(P_{j, 1}-P_{j, 2}\right) M_{j} A}{R_{u} T\left(z_{2}-z_{1}\right) P_{a m}}$ where A is the area of the evaporating surface.
Evaporation, pure liquid into moving air: $y_{j}+y_{a}=1$. For $z_{1}=$ liquid surface and $z_{2}=z_{\infty}=$ freestream (above BL), $N_{j}=k_{G}\left(P_{j, 1}-P_{j, \infty}\right)$, where $k_{G}=\mathrm{Nu} \frac{D_{a j}}{L}\left(\frac{\mathrm{Sc}}{\operatorname{Pr}}\right)^{0.33} \frac{P}{P_{a m}} \frac{1}{R_{u} T}, \operatorname{Re}=\frac{L U_{\infty} \rho}{\mu}=\frac{L U_{\infty}}{v}, \operatorname{Sc}=\frac{\mu}{D_{a j} \rho}=\frac{v}{D_{a j}}, \operatorname{Pr}=\frac{\mu c_{p}}{k}=\frac{v \rho c_{p}}{k}$, $\mathrm{Nu}=\frac{L h}{k}=\underline{\text { Nusselt number, }} h=\frac{q}{\Delta T}=$ heat transfer coefficient; Nu depends on geometry, Re, Pr, etc. (look up Nu eq. in tables), $P_{a m}=\frac{P_{a, \infty}-P_{a, 1}}{\ln \left(P_{a, \infty} / P_{a, 1}\right)}$, and finally $\dot{m}_{j}=\dot{m}_{j, \text { evap }}=N_{j} M_{j} A$ where A is the area of the evaporating surface.
Evaporation, two film: Same equations as above, but at the liquid interface $\left(z_{1}=z_{i}\right)$, use $x_{j}=n_{j} / n_{t}$ for liquid mol fraction, and at the interface use: Raoult's law: $P_{j, i}=x_{j, i} P_{v, j}$ or Henry's law: $P_{j, i}=x_{j, i} H^{\prime}$ (H' looked up in tables). If liquid at bottom of a confined space for a long time, $P_{j \text { in the air }}=P_{j, i}$ and use either Raoult or Henry for $P_{j, i}$.
Thermodynamics of evaporation: Category 1: $T_{\text {room }}<T_{C}$ and $P_{\text {room }}<P_{C}, y_{j, \text { ss }}=P_{v, j} / P, y_{j, \text { max }}=n_{j} /\left(n_{j}+n_{a}\right)$,
Category 2: $T_{\text {room }}>T_{C}$ and $P_{\text {room }}<P_{C}$, all the liquid evaporates and thus $y_{j, \text { ss }}=n_{j} /\left(n_{j}+n_{a}\right)$.

Room ventilation: Note: No j subscript, well-mixed conditions. E.g., for the simple room sketched here with a source and wall adsorption,
$V \frac{d c}{d t}=Q_{s} c_{s}+S-Q_{e} c-k_{w} A_{s} c \rightarrow \frac{d c}{d t}=B-A c, A=\frac{Q_{e}+k_{w} A_{s}}{V}, B=\frac{S+Q_{s} c_{s}}{V}$,
$c_{s s}=\frac{B}{A}, \frac{c_{s s}-c(t)}{c_{s s}-c(0)}=\exp (-A t)$. If also desorption: $\dot{m}_{\text {wall loss }}=k_{w} A_{s}\left(c-c_{d}\right)$.
Modify as necessary for other configurations. Students must be able to generate
 equations for A and B for any given room ventilation configuration. Examples:
Infiltration: $N_{\text {inf }}=0.315+0.0273 U+0.0105\left|T_{\text {outside }}-T_{\text {inside }}\right| \quad\left[U\right.$ in mph, T in ${ }^{\circ} \mathrm{F}, N$ in $\left.1 / \mathrm{h}\right]$
Recirculated and make-up air: $N=Q / V, Q_{r}=(1-f) Q, Q_{m}=f Q, Q=Q_{r}+Q_{m}$. Air cleaners: $c_{\text {out }}=(1-\eta) c_{\text {in }}$.
Effectiveness coefficient: $e=t_{N} / t_{\text {age, } \mathrm{P}}, t_{N}=V / Q, t_{\text {age }, \mathrm{P}}=$ time for a fluid particle to go from air supply to point P .
Room effectiveness coefficient: $e_{\text {room }}=\frac{t_{N}}{t_{\text {room,avg }}}, t_{N}=\frac{V}{Q},, t_{\text {room,avg }}=\frac{\int_{0}^{\infty} t\left(1-\left[c_{E} / c_{E, s s}\right]\right) d t}{\int_{0}^{\infty}\left(1-\left[c_{E} / c_{E, s s}\right]\right) d t}$ where E is at the room exhaust.
Clean rooms: Same equations as above, but specify maximum particle concentrations according to Class of clean room.
Make-up air operating costs: heating $D D_{h}=(1$ day $) \sum_{365 \text { days }}\left(T_{\text {bal }}-\overline{T_{\text {outdoor }}}\right)^{+}$, cooling $D D_{c}=(1$ day $) \sum_{365 \text { days }}\left(\overline{T_{\text {outdoor }}}-T_{\text {bal }}\right)^{+}$,
Engineering equation (be careful to use these units): $\$_{\text {heating }}=0.154 \frac{D D_{h} t_{\text {operating }} C_{f u} Q}{q_{f u}}$, where $D D_{h}=\left[{ }^{\circ} \mathrm{F}\right.$ heating days $]$,
$t_{\text {operating }}=[\mathrm{h} / \mathrm{wk}], C_{f u}=$ unit fuel cost [\$/unit], $q_{f u}=$ unit fuel energy [BTU/unit], $Q=$ make-up air [ACFM, $\left.\mathrm{ft}^{3} / \mathrm{min}\right]$.
Tunnel ventilation: Note: We consider only balanced, steady-state, uniformly distributed transverse tunnel ventilation.
Source: $S=(E F)_{c} n_{c} v_{c} L$, where $(E F)_{c}=$ emission factor per car [mg/(car $\left.\left.\cdot \mathrm{km}\right)\right], n_{c}=$ traffic density [cars/km],
$v_{c}=$ car speed [km/hr], and $L=$ tunnel length [km] (sometimes [m] - must convert; be careful of units, as always!)
Concentration: We get a first-order ODE as a function of x (distance down the tunnel): $d c / d x=B-A c$, with solution
$c_{\max }=\frac{B}{A}, \frac{c_{\max }-c(x)}{c_{\max }-c(0)}=\exp (-A x)$, where $A=\frac{k+q_{m}}{U}, B=\frac{s+q_{m} c_{m}}{U}, q_{m}=\frac{Q_{m}}{A_{c} L}, q_{e}=\frac{Q_{e}}{A_{c} L}=q_{m}, s=\frac{S}{A_{c} L}, k=\frac{k_{w} A_{s}}{A_{c} L}$.
Hood design: Particles - match capture velocity to actual velocity. Vapors - use control velocity and tables as needed.
Canopy hoods with periodic surging: $V_{h}=$ hood volume, $Q_{s}(t)$ and $Q_{w}(t)$ are source and hood volume flow rates, respectively, and T is the time period between surges. $V_{s}=\int_{0}^{T} Q_{s} d t, V_{w}=\int_{0}^{T} Q_{w} d t$ To avoid spillover, $V_{s}<V_{h}$ and $V_{s}<V_{w}$.
Gaseous air cleaners in series and parallel: Note: Some books use E instead of η for air cleaner removal efficiency.
Parallel: $\eta_{\text {overall }}=1-\sum_{j=1}^{m} f_{j}\left[1-\eta_{j}\right]$ for m cleaners, where $f_{j}=$ volume fraction through cleaner $j, f_{j}=\frac{Q_{j}}{Q_{\text {total }}}$
Series: $\eta_{\text {overall }}=1-\prod_{j=1}^{m}\left[1-\eta_{j}\right]$ for m cleaners, where the volume flow rate of air through each cleaner is the same.
Exhaust Duct System Design: For major losses (long, straight sections of duct), use the Darcy friction factor, f,
$h_{L, \text { major }}=f \frac{L}{D} \frac{V^{2}}{2 g}, f=8\left[(8 / \mathrm{Re})^{12}+(A+B)^{-1.5}\right]^{1 / 12}$, where $A=\left\{-2.457 \cdot \ln \left[\left(\frac{7}{\operatorname{Re}}\right)^{0.9}+0.27 \frac{\varepsilon}{D}\right]\right\}^{16}$ and $B=\left(\frac{37530}{\operatorname{Re}}\right)^{16}$.
Non-circular ducts: hydraulic diameter, $D_{h}=\frac{4 A_{c}}{p}$, where $A_{c}=$ cross-sectional area of the duct, $p=$ wetted perimeter.
For minor losses (elbows, transition sections, \ldots), $h_{L, \text { minor }}=\sum C_{0} V^{2} / 2 g$ ($\left.C_{0}=K_{L}\right)$. Use tables and charts provided.
Energy equation in pressure form: $P_{1}+\alpha_{1}(V P)_{1}+\rho g z_{1}+\delta P_{\text {fan,u }}=P_{2}+\alpha_{2}(V P)_{2}+\rho g z_{2}+\rho g h_{L}$, where $V P=\rho V^{2} / 2$ and Δz is negligible in air. Operating point is volume flow rate $Q=V A_{c}$ where required fan pressure $=$ available fan pressure.

Particles: $c_{\text {number }, j}=\frac{c_{j}}{m_{p, \text { mean }}}, m_{p, \text { mean }}=\rho_{p} \frac{1}{6} \pi\left(D_{p, a m}(\operatorname{mass})\right)^{3}, \vec{F}_{\text {gravity }}=\left(\rho_{p}-\rho\right) \frac{\pi}{6} D_{p}{ }^{3} \vec{g}, \vec{F}_{\text {drag }}=-\frac{\rho}{8} \frac{C_{D}}{C} \pi D_{p}{ }^{2} \vec{v}_{r}\left|\vec{v}_{r}\right|$,
where $v_{r}=$ relative particle velocity, $\vec{v}_{r}=\vec{v}-\vec{U}$, where \vec{v} is the particle velocity and \vec{U} is the air velocity.
Kn is the Knudsen number, λ is the mean free path of air molecules, and C is the Cunningham correction factor,

Stokes: $C_{D}=\frac{24}{\mathrm{Re}}$ for $\mathrm{Re}<0.1$, Morrison: $C_{D} \approx \frac{24}{\operatorname{Re}}+\frac{2.6\left(\frac{\mathrm{Re}}{5.0}\right)}{1+\left(\frac{\mathrm{Re}}{5.0}\right)^{1.52}}+\frac{0.411\left(\frac{\mathrm{Re}}{2.63 \times 10^{5}}\right)^{-7.94}}{1+\left(\frac{\mathrm{Re}}{2.63 \times 10^{5}}\right)^{-8.00}}+\frac{0.25\left(\frac{\mathrm{Re}}{10^{6}}\right)}{1+\left(\frac{\mathrm{Re}}{10^{6}}\right)}$ for $\mathrm{Re}<10^{6}$.
Terminal settling speed: $V_{t}=\sqrt{\frac{4}{3} \frac{\rho_{p}-\rho}{\rho} g D_{p} \frac{C}{C_{D}}}, \sqrt[\operatorname{Re}=\frac{\rho V_{t} D_{p}}{\mu}]{ }$. Stokes flow approx. $(\operatorname{Re}<0.1), V_{t}=\frac{\rho_{p}-\rho}{18} D_{p}{ }^{2} g \frac{C}{\mu}$.
Grade efficiency for particulate APCS: $V_{t}\left(\right.$ or $\left.v_{r}\right)=\operatorname{fnc}\left(D_{p}\right)$, so $\eta=\operatorname{fnc}\left(D_{p}\right) \&$ Grade efficiency: $\eta\left(D_{p}\right)=1-\frac{c}{c(\mathrm{in})}$.
Settling in box, room, container of height $\boldsymbol{H}: t_{c}=H / V_{t}=$ critical time; laminar and well-mixed are two extremes:
Laminar: $\frac{c_{\text {avg }}}{c_{0}}=1-\frac{t}{t_{c}}, \eta\left(D_{p}\right)=\frac{t}{t_{c}}$ if $t \leq t_{c} ; \frac{c_{\text {avg }}}{c_{0}}=0, \eta\left(D_{p}\right)=1$ if $t>t_{c}$ Well-mixed: $\frac{c}{c_{0}}=\exp \left(-\frac{t}{t_{c}}\right), \eta\left(D_{p}\right)=1-\exp \left(-\frac{t}{t_{c}}\right)$
Settling in duct: $L_{c}=\frac{H U}{V_{t}}$, Laminar: $\eta\left(D_{p}\right)=\frac{L}{L_{c}}$ if $L \leq L_{c} ; \quad \eta\left(D_{p}\right)=1$ if $L>L_{c}$, Well-mixed: $\eta\left(D_{p}\right)=1-\exp \left(-\frac{L}{L_{c}}\right)$.
Non-spherical: Aero: $V_{t}=\sqrt{\frac{4}{3} \frac{\rho_{0}-\rho}{\rho} g D_{a e} \frac{C}{C_{D}}} \sqrt[\rho_{0}=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}]{ }$, Spherical: $V_{t}=\sqrt{\frac{4}{3} \frac{\rho_{p}-\rho}{\rho} g D_{s e} \frac{C}{C_{D}}}$, Volume: $V_{p}=\frac{\pi D_{v e}^{3}}{6}$.

Inertial separation devices:

Terminal radial speed, inertial separation: $v_{r}=\sqrt{\frac{4}{3} \frac{\rho_{p}-\rho}{\rho} \frac{U_{\theta}^{2}}{r_{m}} D_{p} \frac{C}{C_{D}}}, \operatorname{Re}=\frac{\rho v_{r} D_{p}}{\mu}$, where $\frac{U_{\theta}^{2}}{r_{m}}$ replaces g in the equations, $r_{m}=$ mean radius, $x=r_{m} \theta, L_{c}=\frac{W U_{\theta}}{v_{r}}, \theta_{c}=\frac{L_{c}}{r_{m}}$. For Stokes flow approx. $(\operatorname{Re}<0.1), v_{r}=\frac{\rho_{p}-\rho}{18} D_{p}{ }^{2} \frac{U_{\theta}{ }^{2}}{r_{m}} \frac{C}{\mu}$. Laminar settling: $\eta\left(D_{p}\right)=\frac{L}{L_{c}}$ if $L<L_{c} ; \quad \eta\left(D_{p}\right)=1$ if $L>L_{c}$. Well-mixed settling: $\eta\left(D_{p}\right)=1-\exp \left(-\frac{L}{L_{c}}\right)$. Standard Lapple cyclone: $\quad \eta\left(D_{p}\right)=\frac{1}{1+\left(D_{p, \mathrm{cut}} / D_{p}\right)^{2}}$, where $D_{p, \mathrm{cut}}=\sqrt{\frac{3 \mu D_{2}{ }^{3}}{128 \pi Q\left(\rho_{p}-\rho\right)}}, D_{2}=$ overall cyclone diameter. Pressure drop and required power: $\Delta P=40.96 \rho\left(\frac{Q}{W H}\right)^{2}=2621.44 \rho \frac{Q^{2}}{D_{2}^{4}}, \dot{W}_{\text {blower }}=\frac{Q \Delta P}{\eta_{\text {blower }}}$, where $W=\frac{D_{2}}{4}$ \& $H=\frac{D_{2}}{2}$.
Particle air cleaners in series and parallel: Note: Same as for gaseous contaminants except now a grade efficiency.
Parallel: $\eta\left(D_{p}\right)_{\text {overall }}=1-\sum_{j=1}^{m} f_{j}\left[1-\eta\left(D_{p}\right)_{j}\right]$, where $f_{j}=$ volume fraction through cleaner $j, f_{j}=\frac{Q_{j}}{Q_{\text {total }}}$.
Series: $\eta\left(D_{p}\right)_{\text {overall }}=1-\prod_{j=1}^{m}\left[1-\eta\left(D_{p}\right)_{j}\right]$, where the volume flow rate of air through each cleaner is the same.
Air filters: $\left(\varepsilon=\right.$ porosity, $U_{0}=$ air speed upstream of filter, $L=$ filter thickness, $\eta_{f}\left(D_{p}\right)=$ single-fiber collection efficiency $)$
$\operatorname{Stk}=\frac{\left(\rho_{p}-\rho\right) D_{p}{ }^{2}\left(U_{0} / \varepsilon\right)}{18 \mu D_{f}}, \eta_{f}\left(D_{p}\right)=\left(\frac{S t k}{S t k+0.425}\right)^{2}, L_{c}=\frac{\pi}{4} \frac{\varepsilon}{1-\varepsilon} \frac{D_{f}}{\eta_{f}\left(D_{p}\right)}, \eta\left(D_{p}\right)=1-\exp \left(-\frac{L}{L_{c}}\right)$.

