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General and conversions: 2
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= =
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Molecular weights and mols: m nM= , air 28.97 g/molM = , water 18.02 g/molM = , Avagadro’s number: 236.02214 10× . 

Air at SATP: SATP SATP101.325 kPa,  298.15 KP T= = , 31.184 kg/mρ = , ( )51.849 10  kg/ m sµ −= × , 0.06704 μmλ = . 
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Volume and mass flow rate: cQ UA= =V , m Qρ ρ= = 
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Relative humidity & vapor pressure: 2 2
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Water loss from breathing: 2 2 2
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Dose and dose rate: ( ) [ ]min min
 dose rate  mg per minuteD Qc= = , ( ) [ ]

0
 total dose  mg

T

tD Qc dt= = ∫  

First-order ODE: dy B Ay
dt

= − . For a step function change and constant A and B, 
( ) ( )1/2

ln 1 / 2
ln 1 / 2t

A
−

= = − τ , ss
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1 / Aτ = , and the solution at any time t is [ ] ( )( ) (0) expss ssy t y y y At= − − − . 

Mass body burden ODE and solution: inspired
bb
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solution at any time t is ( ), ,( ) (0) expbb bb ss bb ss bb rm t m m m k t = − − −  . 

Exposure parameter for gas mixtures: For J toxins, each with its own PEL: 
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J
j

n
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y
E

=
=∑ , En > 1 = violation. 

Hearing and noise: 10
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, Q = 1 (free space), 2 (hard floor), 4 (hard 2-D corner), 8 (hard 3-D corner). 

For J sound sources: 
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Mifflin St. Jeor equation for BMR: 
10.0 6.25 5.0 kcalBMR  =  Engr. equation where   
1 kg 1 cm 1 yr day

mass [kg], height [cm], age [yr], 5 male, -161 female

b
m h aM s

m h a s s

 
= = + − + 

 
= = = = + =



. 

Heat stress: Note: These are engineering equations with units built in. All Q  values have units of [kcal/min]. 

evap,req conv res radQ M Q Q Q = − + + + 
    , ( )( )0.67

conv 0.0325 0.1066s a a sQ KA U T T= + − , ( )rad 0.0728 s w sQ A K T T= − , 

( ) ( )res 0.0014 307.15 0.0173 5.87 (at )a a v aQ M T RH P T = − − + − 
  , [ ]0.63

evap,max 0.198 (at ) (at )s a a v a v sQ KA U RH P T P T= − , 

with T in K, RH as a number, not a %, ( )( )
1/44 9 0.50.248 10w G a G aT T U T T = + × −  , evap,req

evap,max
100%

Q
HSI

Q
= ×




.  

 Note (confusing!): Pv in kPa for resQ , but Pv in mm Hg for evap,maxQ . Conversion: ( ) ( )760 mm Hg  / 101.325 kPa . 

Emission factors (EPA AP-42): 
( )pollutant pollutant or 

some appropriate denominator
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Tank filling: ,
, displaced liquid in
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When a liquid puddle of species k sits at the bottom of a tank being filled with species j, emissions come from both j & k, 
, ,
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Gradient diffusion of A: A
daJ b
dz

= − , where 
Aa =
V

 and A = mass, energy, momentum, … For mass, j
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= − . 

Evaporation, pure liquid into stagnant air: 1j ay y+ = . For z1 = liquid surface and z2 = top of container, 
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   where A is the area of the evaporating surface. 

Evaporation, pure liquid into moving air: 1j ay y+ = . For z1 = liquid surface and z2 = z∞ = freestream (above BL), 

( ),1 ,j G j jN k P P ∞= − , where 
0.33Sc 1Nu

Pr
aj

G
am u

D Pk
L P R T
 =  
 

, Re LU LUρ
µ ν
∞ ∞= = , Sc

aj ajD D
µ ν
ρ

= = , Pr p pc c
k k
µ νρ

= = ,  

Nu Lh
k

=  = Nusselt number, qh
T

=
∆

 = heat transfer coefficient; Nu depends on geometry, Re, Pr, etc. (look up Nu eq. in 

tables), ( )
, ,1

, ,1ln /
a a

am
a a

P P
P

P P
∞

∞

−
= , and finally ,evapj j j jm m N M A= =   where A is the area of the evaporating surface. 

Evaporation, two film: Same equations as above, but at the liquid interface (z1 = zi), use /j j tx n n=  for liquid mol fraction, 

and at the interface use: Raoult’s law: , , ,j i j i v jP x P=  or Henry’s law: , ,j i j iP x H ′=  (H′ looked up in tables).   

If liquid at bottom of a confined space for a long time,  in the air ,j j iP P=  and use either Raoult or Henry for Pj,i. 

Thermodynamics of evaporation: Category 1: Troom < TC and Proom < PC, ,ss , /j v jy P P= , ( ),max /j j j ay n n n= + ,  

Category 2: Troom > TC and Proom < PC, all the liquid evaporates and thus ( ),ss /j j j ay n n n= + .  
  



Room ventilation: Note: No j subscript, well-mixed conditions. E.g., for the 
simple room sketched here with a source and wall adsorption,  

s s e w s
dc Q c S Q c k A c
dt

= + − −V  → dc B Ac
dt

= − , e w sQ k AA +
=

V
, s sS Q cB +

=
V

, 

ss
Bc
A

= , ( )
( ) ( )exp
0

ss

ss

c c t
At

c c
−

= −
−

. If also desorption: ( )wall loss w s dm k A c c= − . 

Modify as necessary for other configurations. Students must be able to generate 
equations for A and B for any given room ventilation configuration. Examples:  

Infiltration: o
inf outside inside0.315 0.0273 0.0105      in mph,  in F,  in 1/hN U T T U T N = + + −    

Recirculated and make-up air: /N Q= V , ( )1rQ f Q= − , mQ fQ= , r mQ Q Q= + . Air cleaners: ( )out in1c cη= − .  
 

Effectiveness coefficient: age,P/Ne t t= , /Nt Q=V , tage,P = time for a fluid particle to go from air supply to point P. 

Room effectiveness coefficient: room
room,avg

Nte
t

= , Nt Q
=

V
, 

( )
( )

,0
room,avg

,0

1

1

E E ss

E E ss

t c c dt
t

c c dt

∞

∞

 −  =
 −  

∫
∫

 where E is at the room exhaust. 

Clean rooms: Same equations as above, but specify maximum particle concentrations according to Class of clean room. 

Make-up air operating costs: heating ( ) ( )bal outdoor
365 days

1 dayhDD T T
+

= −∑ , cooling ( ) ( )outdoor bal
365 days

1 daycDD T T
+

= −∑ , 

Engineering equation (be careful to use these units): operating
heating $ = 0.154 h fu

fu

DD t C Q
q

, where DDh = [oF heating days], 

toperating =  [h/wk], Cfu =  unit fuel cost [$/unit], qfu =  unit fuel energy [BTU/unit], Q = make-up air [ACFM, ft3/min]. 
Tunnel ventilation: Note: We consider only balanced, steady-state, uniformly distributed transverse tunnel ventilation. 

Source: ( ) c cc
S EF n v L= , where (EF)c = emission factor per car [mg/(car⋅km)], nc = traffic density [cars/km], 

vc = car speed [km/hr], and L = tunnel length [km] (sometimes [m] – must convert; be careful of units, as always!) 
Concentration: We get a first-order ODE as a function of x (distance down the tunnel): /dc dx B Ac= − , with solution  
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= . 

Hood design: Particles – match capture velocity to actual velocity. Vapors – use control velocity and tables as needed.  
Canopy hoods with periodic surging: Vh = hood volume, Qs(t) and Qw(t) are source and hood volume flow rates, respectively, 

and T is the time period between surges. 
0

T

s sQ dt= ∫V , 
0

T

w wQ dt= ∫V  To avoid spillover, s h<V V  and s w<V V . 

Gaseous air cleaners in series and parallel: Note: Some books use E instead of η for air cleaner removal efficiency. 

Parallel: overall
1

1 1
m

j j
j

fη η
=

 = − − ∑  for m cleaners, where fj = volume fraction through cleaner j, 
total

j
j

Q
f

Q
= . 

Series: overall
1

1 1
m

j
j

η η
=

 = − − ∏  for m cleaners, where the volume flow rate of air through each cleaner is the same. 

Exhaust Duct System Design: For major losses (long, straight sections of duct), use the Darcy friction factor, f, 
2

,major 2L
L Vh f
D g

= , ( ) ( )
 1/1212 1 58 8 Re .f / A B − = + +  , where 

160 972 457 ln 0 27
Re

.

A . .
D
ε    = − ⋅ +   

     
 and  

1637530
Re

B  =  
 

. 

Non-circular ducts: hydraulic diameter, 
4 c

h
AD
p

= , where Ac = cross-sectional area of the duct, p = wetted perimeter. 

For minor losses (elbows, transition sections, …), 
2

,minor 0 2L
Vh C g=∑  (C0 = KL). Use tables and charts provided. 

Energy equation in pressure form: ( ) ( )1 1 1 fan,u 2 2 21 2 LP VP gz P P VP gz ghα ρ δ α ρ ρ+ + + = + + + , where 2 2VP V /ρ=  and ∆z is 

negligible in air. Operating point is volume flow rate cQ VA=  where required fan pressure = available fan pressure.   

 
Qe 
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kwAsc S 



Particles: number, 
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j
j

p

c
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= , ( )( )3
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6p p p amm Dρ π= , ( ) 3

gravity 6p pF D gπρ ρ= −


 , 2
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D
p r r

CF D v v
C
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  ,  

 where vr = relative particle velocity, rv v U= −


  , where v  is the particle velocity and U


 is the air velocity.  
 Kn is the Knudsen number, λ is the mean free path of air molecules, and C is the Cunningham correction factor, 

Kn
pD
λ

= , 
0.499 8 P
µ πλ

ρ
= , 

0.551 Kn 2.514 0.80exp
Kn

C   = + + −    
, and CD = CD(Re), where Re r pv Dρ

µ
=



,  

 Stokes: 24  for Re < 0.1
ReDC = , Morrison: 

7.94

5 6
6

1.52 8.00

65

Re Re Re2.6 0.411 0.25
24 5.0 2.63 10 10   for Re < 10

ReRe Re Re 11 1 105.0 2.63 10
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−

−

     
     ×     ≈ + + +

     ++ +       ×   
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 Terminal settling speed: 
4
3

p
t p

D

CV gD
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ρ ρ
ρ
−

= , Re t pV Dρ
µ

= . Stokes flow approx. (Re < 0.1), 2
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−
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 Grade efficiency for particulate APCS: Vt (or vr) = fnc(Dp), so η = fnc(Dp) & Grade efficiency: ( ) 1
(in)p
cD

c
η = − . 

Settling in box, room, container of height H: c tt H V=  = critical time; laminar and well-mixed are two extremes: 

Laminar: ( ) ( )aavg g

0

v
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1 , 0, 1  if ;  if p
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c t tD t t
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 Settling in duct: c
t
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c
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 Non-spherical: Aero: 04
3t ae

D
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ρ ρ
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=  0 3
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ρ = , Spherical: 
4
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p
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Inertial separation devices: 

 Terminal radial speed, inertial separation: 
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m D

U Cv D
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θρ ρ

ρ
−

= , Re r pv Dρ
µ
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2
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U
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equations, rm = mean radius, mx r θ= , c
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θ = . For Stokes flow approx. (Re < 0.1), 
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Laminar settling: ( ) ( ) if ;   1 if p c p c
c

LD L L D L L
L

η η= < = > . Well-mixed settling: ( ) 1 expp
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Standard Lapple cyclone: ( )
( )2

,cut

1

1
p

p p

D
D D

η =
+

, where ( )
3

2
,cut

3
128p

p

DD
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−
, D2 = overall cyclone diameter. 

Pressure drop and required power: 
2 2

4
2

40.96 2621.44Q QP
WH D

ρ ρ ∆ = = 
 

, blower
blower

Q PW
η
∆

= , where 2

4
DW =  & 2

2
DH = . 

Particle air cleaners in series and parallel: Note: Same as for gaseous contaminants except now a grade efficiency. 

Parallel: ( ) ( )
overall

1
1 1

m

p j p j
j

D f Dη η
=

 = − −  ∑ , where fj = volume fraction through cleaner j, 
total

j
j

Q
f

Q
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Series: ( ) ( )
overall

1

1 1
m

p p j
j

D Dη η
=

 = − −  ∏ , where the volume flow rate of air through each cleaner is the same. 

Air filters: (ε = porosity, U0 = air speed upstream of filter, L = filter thickness, η f (Dp) = single-fiber collection efficiency) 
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0 /
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=
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