Today, we will:

- Continue to discuss **Wall Losses** [Section 5.5]
- Discuss how to **measure** the wall loss coefficient
- Discuss **Recirculation** [Section 5.6]

\[\dot{m}_{\text{wall low}} = k_w A_w c \]

How to measure \(k_w \)?

Recall:

\[\dot{m}_{\text{wall low}} = k_w A_w c \]

- Put in some initial concentration \((S = \text{big}) \rightarrow c = c(0) \) at \(t = 0 \)
- At \(t = 0 \), turn off to remove \(S \) \((S = 0) \)
- Also at \(t = 0 \), turn off all ventilation \((Q = 0) \) and seal up room

- Measure \(c \) vs \(t \)

\(k_w \) from **1st or 2nd order behavior**

\[k_w = \text{constant} \]
Analysis

Our solution is given by the following differential equation:

\[\frac{c_{ij} - c}{c_{ij} - c(0)} = \exp\left(-A t\right) \]

(1)

Where:

- \(c_{ij} = \frac{B}{A} \)
- \(c_{ij} = \frac{S + QCa}{Q + kw As} \)
- \(A = \frac{Q + kw As}{\nu} \)

\[A = \frac{kw As}{\nu} \]

(2)

C = c(0) \exp\left(-\frac{kw As}{\nu} t\right)

(3)

We note that:

- \(\log(ab) = \log a + \log b \)
- \(\ln e = a \)
- \(\log_{10}(x) = \frac{\ln(x)}{\ln(10)} \)
Take \(\log_{10} \) of both sides of \((2) \)

\[
\log_{10} (c) = \log_{10} (c(0)) + \log_{10} \left[\exp \left(\frac{-kwAs}{A} \frac{t}{\ln(10)} \right) \right]
\]

\[
\log_{10} (c) = \log_{10} (c(0)) - \frac{kwAs}{A} \frac{t}{\ln(10)}
\]

"m" = slope

Eq for straight line if plot \(\log_{10} (c) \) vs \(t \)

\[
y = mx + b
\]

Here "y" = \(\log_{10} (c) \)

"x" = \(t \)

Plot \(\log_{10} (c) \) vs \(t \) to get the slope of line

best fit straight line (Regression Analysis)

\[
\text{Slope} = \frac{-kwAs}{\frac{A}{\ln(10)}}
\]

Solve for \(kw \) from this eq.
\[\dot{m}_{\text{wall loss}} = k_w A_s C \]

is for adsorption only

(a sink of species mass)

As a list of species \(j \) goes into the surface, it can also start desorbing.

New eq:

One eq. is:

\[\dot{m}_{\text{wall loss}} = k_w A_s (c-c_d) \]

If \(c > c_d \), \(\dot{m}_{\text{wall loss}} = \text{adsorption} \) \(\ast \)

If \(c < c_d \), \(\dot{m}_{\text{wall loss}} = \text{desorption} \) \(\circ \)
Recirculation [Section 5.6]

\[Q_s = Q \]

\[Q_e = Q \]

\[Q_d = fQ \]

\[c_d = c \]

\[Q_r = (1-f)Q \]

\[c_m = c_a \]

Air cleaner \(\eta \) or \(E \)

\[Q_m = fQ \]

\[Q_m \text{ must } = Q_d \]

\[Q_r = (1-f)Q \]

\[f = \frac{Q_m}{Q} \]

\[Q_r = Q_s - Q_m \]

\[= Q - fQ \]

\[= (1-f)Q \]
Note: if $f = 1$ — no recirculation — "100% make-up air"

if $f \neq 0$ — 100% recirculated air (no make-up air)

Real rooms/buildings, $f \neq 0$

- **Infiltration** — outside air leaks in through cracks, windows, doors, etc.

- **Exfiltration** — inside air escapes out through cracks...

Typical home has $N \approx 1$ (air exchange rate)

Air cleaner efficiency η

Air entering C_{in}

Air exiting C_{out}

\[
\eta = \frac{C_{out}}{C_{in}}
\]

Species i:

\[
\dot{m}_{in} = C_{in} Q
\]

\[
\dot{m}_{out} = C_{out} Q
\]

\[
\eta = \frac{\dot{m}_{in} - \dot{m}_{out}}{\dot{m}_{in}} = 1 - \frac{\dot{m}_{out}}{\dot{m}_{in}} = 1 - \frac{C_{out} Q}{C_{in} Q} = 1 - \frac{C_{out}}{C_{in}} = \eta
\]
or, \[C_{\text{out}} = (1-n)C_{\text{in}} \]

Goal: Solve for \(C_s \)

Lower "tee"

\[C (1-f)Q = C_s Q \]

\[C Q_r + C_m Q_m = C_s Q_s \]

\[C (1-f)Q + C_a fQ = C_i Q \]

\[C_i = C (1-f) + C_a f \]

\[C_s = (1-n)C_i = (1-n) \left[C (1-f) + C_a f \right] \]
Finally put all this into the room eq. in standard form:

\[
\frac{dc}{dt} = B - Ac
\]

\[
\frac{dA}{dt} = Qc_s + S - Qc - kw_A c
\]

Plus in Cs:

Split up all terms with a c

\[
\text{all terms } \text{Wo a c}
\]

\[
\text{Integer algebra - do it on your own for practice!}
\]

Final Eq:

\[
\frac{dc}{dt} = \frac{1}{A} \left[Q(1-n) + c_A + S \right] - \frac{1}{A} \left[Q + kw_A - Q(1-n)(1-t) \right] c
\]

\[
\frac{dc}{dt} = B - Ac
\]

From here on, you know how to solve since in standard form.