Today, we will:

- Continue our discussion about **hood suction velocities** and **isopleths**
- Do an example problem – capture velocity
- Discuss **reach** and the influence of local ventilation on general ventilation
- Discuss **Control of Vapors from Open Surface Vessels** [Section 6.2]
- Discuss the difference between **capture velocity** and **control velocity**

Example: Capture velocity and hood design

Given: A flanged round inlet is used as a hood to capture overspray particles from spray painting. The hood inlet (face) diameter is 0.50 m. The spray paint region of concern extends to $x = 0.50$ m (axially) and $r = 0.25$ m (radially) as sketched.

To do: Calculate the range of required volume flow rate through the hood.

Solution:

*Table 6.1 - get V_c (capture velocity)

$$V_c = \frac{Q}{0.5D}$$

where Q is the volume flow rate, D is the face (hood) diameter, and V_c is the capture velocity.

Table 6.1 Capture velocities (abstracted from ACGIH, 2001).

<table>
<thead>
<tr>
<th>characteristics of contaminant emission</th>
<th>examples</th>
<th>capture velocity (FPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. contaminant enters quiescent air with negligible velocity</td>
<td>degreasing tank, evaporation</td>
<td>50-100</td>
</tr>
<tr>
<td>2. contaminant enters slightly moving air with a low velocity</td>
<td>welding, vessel filling</td>
<td>100-200</td>
</tr>
<tr>
<td>3. contaminant actively generated and enters rapidly moving air</td>
<td>spray painting, stone crushers</td>
<td>200-500</td>
</tr>
<tr>
<td>4. contaminant air enters rapidly at high velocity</td>
<td>grinding, abrasive blasting</td>
<td>500-2000</td>
</tr>
</tbody>
</table>

Lower values of capture velocity:
- room air movement minimal or conducive to capture
- contaminants of low toxicity
- intermittent use or low production rates
- large hood and large mass of air moved

Upper values of capture velocity:
- adverse room air movement
- contaminants of high toxicity
- heavy use and high production rates
- small hood and small mass of air moved

Range of $V_c = 200$ to 500 fpm.
Figure 6.10 Velocity isopleths (curves of constant U/U_{face}, %) for a flanged circular opening (adapted from ASHRAE HVAC Applications Handbook, 1995).

\[
\frac{U}{U_{\text{face}}} = 0.075
\]

Set \(U = V_c \)

\[
Q_{\text{reqd}} = U \times A_{\text{face}}
\]

\[
\frac{U}{U_{\text{face}}} = \frac{V_c}{0.075} = \frac{\pi D^2}{4} = \frac{\pi D}{0.075}
\]

Range

\[
Q = \frac{200 \text{ ft}^3/\text{min}}{0.075} \pi (0.5 \text{ m})^2 = \frac{1}{(0.3048 \text{ m})}^2 = 5636 \text{ ft}^3/\text{min}
\]
Low end of range = 5600 CFM

Similarly, high end of range = 14000 CFM

Comment: avg = 10000 CFM

Typ kitchen hood = 5800 CFM

Here need 20x more than kitchen hood.

Fundamental problem with capture velocity:

\(V_c \) is actually a speed, not a velocity.

Noting in \(V_c \) about direction of particle.

\(V_p = \text{particle speed} \)

Worst case scenario is when \(V_p \) is in opposite direction of air flow.

The \(V_c \) values are ultra conservative based on worst-case scenario.
Terminology: \(\text{Reach} \) = the volume of air in front of the hood capable of capturing the particulate.

- Flanged

- Unflanged

- Smaller reach for some conditions

How to increase reach:

- Move closer to source
- Add a flange — helps a little
- Make face of hood larger — typ funnel

Problem: limited visual access
Influence of local ventilation on general ventilation

Room designed w/o a hood, choose Q_s for HVAC purpose

$Q_e = Q_d$

$q_{typ.} = 200 \text{ cfm}$

Later:

$Q_e \uparrow$

Low P in room

Infiltration under doors, etc.

$Q_{hood} \geq 600 \text{ cfm}$

Worst case - "exhaust" can go backwards. Q_e can be Θ

Best to design hoods at same time as design HVAC system.

But often hoods added at a later time.

$\text{CAPTURE OF VAPORS (90\%)}$ [typ. from evaporation]

Hood design is very different from hood design for particulate capture.
- Control of particles → Use \(V_c = \text{capture velocity} \) (a physical speed)
 - Match \(V_c \) to local \(V \) of the hood

- Control of vapor → Use \(\text{control velocity} \)
 - Not a physical speed — it is simply a design parameter
 - Match control velocity of the process to that of the hood

Control velocity — we give no symbol for it in our book
- Design parameter introduced by ACGIH

A PROCEDURE for hood design for vapor capture

• Step 1 — Determine the hazard potential — a letter

Table 6.2
Letter A–D

Always choose the most conservative hazard potential

E.g., B is more conservative (higher hazard) than C
Step 2: Determine the rate of contaminant evolution

Combine steps 1 & 2 into a letter & number → B2

CHOOSE THE LOWER # TO BE CONSERVATIVE

E.g., 2 is more conservative (higher value) than 1

Step 3: Determine the control velocity

In units of FPM

Based on the class & type of hood

See Table 6.3

Step 4: Determine volume flow rate per unit area (evaporation from tanks)

\[
\frac{Q}{A} \quad [\text{CFM} / \text{ft}^2]
\]

Based on control velocity & tank aspect ratio

See Table 6.4
Tables for Hood Design using Control Velocity

Table 6.2 Hazard potential and rate of contaminant evolution (abstracted from ACGIH, 2001).

<table>
<thead>
<tr>
<th>hazard potential</th>
<th>health standard for gas or vapor (PPM)</th>
<th>health standard for mist (mg/m³)</th>
<th>flash point (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 to 10</td>
<td>0 to 0.1</td>
<td>-</td>
</tr>
<tr>
<td>B (Higher)</td>
<td>11 to 100</td>
<td>0.11 to 1.0</td>
<td>under 100</td>
</tr>
<tr>
<td>C</td>
<td>101 to 500</td>
<td>1.1 to 10</td>
<td>100 to 200</td>
</tr>
<tr>
<td>D</td>
<td>over 500</td>
<td>over 10</td>
<td>over 200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rate</th>
<th>liquid temperature (°F)</th>
<th>degrees below boiling (°F)</th>
<th>evaporation time (hr)</th>
<th>gassing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>over 200</td>
<td>0 to 20</td>
<td>0 to 3 (fast)</td>
<td>high</td>
</tr>
<tr>
<td>2</td>
<td>150 to 200</td>
<td>21 to 50</td>
<td>3 to 12 (medium)</td>
<td>medium</td>
</tr>
<tr>
<td>3</td>
<td>94 to 149</td>
<td>51 to 100</td>
<td>12 to 50 (slow)</td>
<td>low</td>
</tr>
<tr>
<td>4</td>
<td>under 94</td>
<td>over 100</td>
<td>over 50 (nil)</td>
<td>nil</td>
</tr>
</tbody>
</table>

1 time for 100% evaporation
2 extent to which gas or vapor are generated: rate depends on the physical process and the solution concentration and temperature

Table 6.3 Minimum control velocities (FPM) for undisturbed locations (abstracted from ACGIH, 2001).

<table>
<thead>
<tr>
<th>class</th>
<th>enclosing hood</th>
<th>lateral hood¹</th>
<th>canopy hood⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 side open</td>
<td>2 sides open</td>
<td>3 sides open</td>
</tr>
<tr>
<td>A1², A2²</td>
<td>100</td>
<td>150</td>
<td>do not use</td>
</tr>
<tr>
<td>A3², B1, B2, C1</td>
<td>75</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td>B3³, C2³, D1³</td>
<td>65</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>A4², C3³, D2³</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>B4, C4, D3³, D4</td>
<td>adequate general room ventilation required</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 use Table 6.4 to compute the volumetric flow rate
2 do not use a canopy hood for hazard potential A processes
3 where complete control of hot water is desired, design as next highest class
4 use \(Q = 1.4(PD) \) control velocity, where \(P \) is hood perimeter and \(D \) is distance between vessel and hood face (27)
Table 6.4 Minimum volumetric flow rates per unit surface area (CFM/ft²) for lateral exhaust systems (abstracted from ACGIH, 2001).

<table>
<thead>
<tr>
<th>control velocity (FPM)</th>
<th>(\frac{W}{L}) aspect ratio = tank width/tank length</th>
<th>(0.0 - 0.09)</th>
<th>(0.1 - 0.24)</th>
<th>(0.25 - 0.49)</th>
<th>(0.5 - 0.99)</th>
<th>(1.0 - 2.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tank against wall or baffled¹</td>
<td></td>
<td>50</td>
<td>50</td>
<td>60</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>75</td>
<td>90</td>
<td>110</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>150</td>
<td>190</td>
<td>225</td>
<td>250³</td>
</tr>
<tr>
<td>free-standing tank¹</td>
<td></td>
<td>50</td>
<td>75</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>110</td>
<td>130</td>
<td>150</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>150</td>
<td>175</td>
<td>200</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>225</td>
<td>250³</td>
<td>250³</td>
<td>250³</td>
</tr>
</tbody>
</table>

¹ use half width to compute \(W/L\) for inlet along tank centerline or two parallel sides of tank

² inlet slot along the long side (\(L\)); if \(6 < L < 10\) ft, multiple takeoffs are desirable; if \(L > 10\) ft, multiple takeoffs in plenum are necessary if:

- \(W = 20\) inches: slot on one side is suitable
- \(20 < W < 36\) inches: slots on both sides are desirable
- \(36 < W < 48\) inches: slots on both sides are necessary unless all other conditions are optimum
- \(W > 48\) inches: lateral exhausts are not usually practical, use push-pull or enclosures
- it is undesirable to use lateral exhaust when \(W/L > 1\) and not practical when \(W/L > 2\)

³ while control velocities of 150 FPM may not be achieved, 250 CFM/ft² is considered adequate for control

Example → we have a tank against the wall with an aspect ratio of 0.3

\[Q/A = 150 \text{ CFM/ft}^2 \]

Steps → calculate

\[Q = \frac{Q}{A} \cdot A \]

Where \(A = \) surface area of evaporating liquid
Example – Hazard potential

Given: Vapors of a certain chemical are evaporating from a large tank in which the liquid temperature is 140°F. The PEL of the chemical is 600 PPM, its flash point is 110°F, and its boiling temperature is 170°F. Evaporation time is about 40 hours, and gassing is low.

To do: What hazard potential class (letter and number, e.g., A4, B2, C1…) would you assign as per Table 6.2?

Table 6.2 Hazard potential and rate of contaminant evolution (abstracted from ACGIH, 2001).

<table>
<thead>
<tr>
<th>hazard potential</th>
<th>health standard for gas or vapor (PPM)</th>
<th>health standard for mist (mg/m³)</th>
<th>flash point (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 to 10</td>
<td>0 to 0.1</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>11 to 100</td>
<td>0.11 to 1.0</td>
<td>under 100</td>
</tr>
<tr>
<td>C</td>
<td>101 to 500</td>
<td>1.1 to 10</td>
<td>100 to 200</td>
</tr>
<tr>
<td>D</td>
<td>over 500</td>
<td>over 10</td>
<td>over 200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rate</th>
<th>liquid temperature (°F)</th>
<th>degrees below boiling (°F)</th>
<th>evaporation time (hr)</th>
<th>gassing²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>over 200</td>
<td>0 to 20</td>
<td>0 to 3 (fast)</td>
<td>high</td>
</tr>
<tr>
<td>2</td>
<td>150 to 200</td>
<td>21 to 50</td>
<td>3 to 12 (medium)</td>
<td>medium</td>
</tr>
<tr>
<td>3</td>
<td>94 to 149</td>
<td>51 to 100</td>
<td>12 to 50 (slow)</td>
<td>low</td>
</tr>
<tr>
<td>4</td>
<td>under 94</td>
<td>over 100</td>
<td>over 50 (nil)</td>
<td>nil</td>
</tr>
</tbody>
</table>

1 time for 100% evaporation

2 extent to which gas or vapor are generated: rate depends on the physical process and the solution concentration and temperature

\[170°F - 140°F = 30°F\] below boil,