
8.7 Gravimetric Settling in a Room 
 

Consider a room of volume V, height H, and horizontal cross-sectional area A as shown in Figure 
8.18, which illustrates both models. 
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Figure 8.18 Gravimetric settling of a monodisperse aerosol in quiescent room air: (a) initial condition 

for both cases, t = 0, (b) laminar settling model for t > 0, (c) well-mixed model for t > 0. 
 
Let c(Dp)0 be the initial mass concentration of particles of diameter Dp in the room (Figure 8.18a). In 
the laminar model all particles of the same size fall uniformly at terminal velocity vt such that those 
near the bottom settle to the floor. At any subsequent time there are no particles of that size above a 
certain height y(Dp), and the concentration remains at c(Dp)0 below this height (Figure 8.18b). The 
same argument applies to particles of other sizes, except the values of y(Dp) are different because they 
settle at different velocities. For the well-mixed model, on the other hand, some particles settle, but 
those that remain are mixed throughout the room volume such that c(Dp) decreases with time (Figure 
8.18c). 
 
8.7.1 Laminar Settling Model 

…Some algebra yields … 
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Let the average mass concentration of particles be denoted by c (Dp). Thus, 
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The average concentration of these particles decreases linearly with time until a time (tc) called the 
critical time elapses, where  
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and all particles of the size whose terminal velocity is vt have settled to the floor.  
 

Note also that tc varies with terminal velocity vt, which depends on particle size, density, 
etc. – i.e, in a polydisperse aerosol, particles of different diameters settle at different 
speeds, and therefore have different critical times. 

 

  



 
8.7.2 Well-Mixed Settling Model 
 On the other hand, suppose the well-mixed settling model is valid. As particles of a particular 
size fall to the floor with velocity vt, an idealized mixer instantaneously redistributes the remaining 
particles throughout the room. The rate of change of mass of particles of this size suspended in the 
room air is equal to the rate of deposition onto the floor, 
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which can be integrated to yield 
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Since the well-mixed model presumes that the concentration is the same throughout the enclosure at 
any instant of time, the term c(Dp) is also equal to the average concentration, c (Dp). 
 
 The well-mixed model predicts that the average mass concentration decreases exponentially, 
while the laminar model predicts that it decreases linearly. In the well-mixed model c (Dp)/c(Dp)0 = 
0.368 at t = tc, while in the laminar model it is zero. In the well-mixed model, the average mass 
concentration does not decrease to 0.001 (0.1%) of its initial value until nearly seven of these time 
constants, i.e. until t ≈ 7tc. 
  
 The laminar model leads one to believe that the dust will be removed too quickly because it 
ignores unavoidable thermal currents, drafts, diffusion, etc. that redistribute particles. The laminar 
model also predicts an infinite concentration gradient at an interface (see Figure 8.18b) that cannot 
exist in nature. The well-mixed model overestimates the time to clean the air because it exaggerates the 
mixing mechanisms. For small, inhalable particles, it is however the more realistic model to use. 
Certainly, it is the more conservative model. In either case, it has been assumed in the analyses above 
that any particle that hits the floor stays there. In reality, some of the particles can be re-entrained into 
the room by air currents; models of this re-entrainment process are beyond the scope of this text. An 
additional source of error is the fact that some particles are deposited or adsorbed on other surfaces in 
the room, including the side walls, as discussed in Chapter 5. 



 
8.8 Gravimetric Settling in Ducts 
 Gravimetric settling in ducts can also be analyzed using the concepts of a laminar settling 
model and a well-mixed settling model. Figure 8.19 illustrates the laminar and well-mixed models for 
flow in a horizontal duct of rectangular cross section (A = WH). 
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Figure 8.19 Gravimetric settling of a monodisperse aerosol in a horizontal duct with uniform air 
flow: (a) laminar conditions, (b) well-mixed conditions. 

 
It is assumed that the horizontal velocity of the gas everywhere in the duct is equal to the average duct 
velocity (U0), i.e. there is plug flow in the gas phase. At the duct inlet, the mass concentration of 
particles of diameter Dp is c(Dp)in. 
 
8.8.1 Laminar Settling Model 
 In the laminar settling model, all particles of the same size fall at their terminal velocity (vt) 
and move with a horizontal velocity equal to that of the carrier gas, vx = U0. Thus at a downstream 
distance x, the uppermost particles have fallen a distance (H - y), 
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The average mass concentration of particles of a certain size c (Dp) at a distance x from the inlet can 
be written as 
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Combining the above two equations yields 
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Since particles settle to the floor of the duct, the duct can be thought of as a simple particle collector. 
The grade efficiency of the duct, η(Dp), for particles of size Dp is defined as 
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The above equation also applies to gravimetric settling in fully established flow between parallel 
plates. See Flagan and Seinfeld (1988) for the derivation. At a critical distance (x = Lc) downstream in 
the duct, the collection efficiency is 100% and the duct contains no particles of the size defined by the 
terminal velocity. The critical distance is defined by 
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8.8.2 Well-Mixed Settling Model  

…After some algebra – see text ….. 
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where 
 

- As = area of lower collecting surface, As = xW 
- Q = volumetric flow rate, Q = U0HW 

 

The grade efficiency can also be written in terms of the critical length, as defined above, 
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Note that we can define a grade efficiency for the gravimetric settling process! 

 

 
 Comparison of the collection efficiencies for laminar and well-mixed settling models shows 
differences similar to those concluded for settling in rooms: 
 

(a) The laminar settling model overestimates deposition because it ignores turbulence and 
diffusion that mix and redistribute particles. 

(b) The well-mixed model exaggerates mixing but nevertheless provides a more accurate 
and conservative design estimate. 

(c) At the critical downstream distance, Lc, the well-mixed settling model predicts a 
collection efficiency of 63.2%, while the laminar settling model predicts 100%. 

(d) At a downstream distance of approximately 7Lc, the well-mixed settling model predicts a 
collection efficiency of 99.9%. 

  
 
8.11 Inertial Deposition in Curved Ducts 



 
  
 

Particles have inertia, and can cross air streamlines as sketched:
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Quasi-static equilibrium of a particle of diameter Dp and density ρp inFigure 8.22  curvilinear flow; 
(a) particle velocity components, and (b) forces acting on the particle. 

The particle’s radial velocity component then simplifies to 
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The above equation is the same as that for gravimetric settling except that gravitational acceleration is 
replaced by centrifugal acceleration. Deposition of particles on the outer wall of the bend can therefore 
be modeled in a fashion similar to gravimetric deposition in horizontal ducts, through use of either the 
laminar (no mixing) settling model or the turbulent (well-mixed) settling model. The particles for 
which inertial separation is important are usually sufficiently large that the Cunnin

  

gham slip factor (C) 
 close to unity, but for completeness C is included in the analysis which follows. 
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Particle trajectory (dashed line) and mass concentration in a curved Figure 8.24 
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and impacts the outer wall at r = r2, θ = θimpact; particle shown at arbitrary time. 
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8.11.2 Well-Mixed Model 
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re shown with degree of shading indicating how mass concentration 
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e well-mixed model; particle enters at r = rin, θ = 0, and impacts the 
outer wall at r = r2, θ = θimpact; particle shown at arbitrary time at location (r,θ). Four 
control volumes a



 
 
Example 8.9 - Particle Classifier 
Given: A company processes agricultural materials, grains, corn, rice, etc. One of the processes is a 
milling operation. Significant fugitive dust is produced. Enclosures and exhaust air (Q, in CFM) are 
needed to capture the dust. A classifier is needed to separate no less than 50% of the particles larger 
than 100 µm (Dp > 100 µm) which are returned for reprocessing. The smaller particles are removed by 
filters (a baghouse – see Chapter 9). Your supervisor suggests constructing a simple device consisting 
of a 180-degree elbow of rectangular cross section containing louvers on the outside surface, as in 
Figure E8.9a. The volumetric flow rate of air in the elbow is Q. Centrifugal force sends large particles 
in the radial direction; the particles pass through the louvers and are drawn off by a slip stream and 
removed by other means. 
 
To do: Compute the grade efficiency curves (similar to Figure 8.7) that will enable operators to select 
the proper volumetric flow rate Q to achieve a certain removal efficiency (η). Assume that the gas 
flow is irrotational and well mixed. Plot the results for a classifier whose dimensions are: 
 

 r1 = 0.30 m r2 = 0.70 m W = 0.40 m s = 0.070 cm 
 

and which separates unit density particles (ρp = 1,000 kg/m3) traveling in an air stream at 300 K. 
 
Solution: From Eq. Error! Reference source not found., 
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From Eq. Error! Reference source not found., 
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and from Eq. Error! Reference source not found., for θ = π (180-degrees), the fractional efficiency 
is 
 

 
Figure E8.9a Centrifugal particle classifier (from Heinsohn & Kabel, 1999). 



 

 
Figure E8.9b Fractional efficiency of a centrifugal particle classifier for three volumetric flow rates; 

classifier dimensions: r1 = 0.3 m, r2 = 0.7 m, W = 0.4 m, s = 0.07 cm (from Heinsohn 
& Kabel, 1999). 
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where the Cunningham slip factor (C) is assumed to equal unity for such large particles, as was shown 
in Table 8.4. Figure E8.9b shows the fractional efficiency at three volumetric flow rates. 
 
Discussion: Clearly the lowest volumetric flow rate classifies particles poorly. At the three higher flow 
rates, the device removes 200 and 300 µm particles efficiently. Use of the well-mixed model is a 
reasonable selection since Reynolds numbers in the elbow are surely large enough to establish 
turbulent flow. The assumption of irrotational flow, however, needs to be justified. The next level of 
sophistication is to use computational fluid dynamics (CFD) computer programs to predict the 
trajectories of particles in the three-dimensional velocity field of the 180-degree elbow. CFD is 
discussed in Chapter 10. 
 


