ME 405 Fall 2006 Professor John M. Cimbala Lecture 10 09/27/2006

Today, we will:

- Finish our discussion of Section 3.4 Hearing and Noise
- Do some example problems
- Discuss Section 3.5 Thermal Comfort and Heat Stress
- Do some example problems

Example

Given: The noise level of a factory machine is 85 dB at 10 m in free space. \= 46 lb at 10 m

To do: Estimate the sound pressure level at a distance of 4.0 ft away when the machine sits in the corner of the building, and all walls are concrete.

Solution:

(1)

Eq 3-75
$$L_p = L_w - 20\log_{10}\left(\frac{r}{r_0}\right) + 10\log_{10}Q - 11.0$$
- Plug in Eq. 1 for Lw

Reall
$$\log(ab) = \log a + \log b$$
 $i = \log(\frac{a}{b}) = \log a - \log b$

$$\int_{Q} \left\{ \left(\frac{Q_c}{r} \right) - \frac{Q_c}{Q} \right\} \right\} \left(\frac{Q_c}{Q} \right) \left(\frac{Q_c}{Q} \right) \right\}$$
 Variable for $\frac{Q_c}{Q} = \frac{Q_c}{Q} = \frac{Q_c}$

· Play in #1
$$\rightarrow$$
 get
$$L_{\gamma} = 85JB + 20 \log_{10} \left(\frac{10 \text{ M}}{1.219 \text{ m}}\right) - 10 \log_{10} \left(\frac{1}{8}\right)$$

$$L_{\gamma} = 112.31 JB$$

ALWAYS ROUND OFF FINAL JB ANSWER TO CHOSEST JB

Note: Lp = fac(r) but Lw + fac(r)

Note: Since Lp= LI, all egis for LI also apply to Lp

Where Lpi = round pressure level of round rounce

j by Atelf

Example

Given: A man stands between two noisy machines on a concrete floor with no walls nearby.

- Machine 1 has an acoustic power of 0.40 W, and is 1.0 m away to the man's right.
- Machine 2 has an acoustic power of 0.50 W, and is 2.0 m away to the man's left.

To do: Estimate the sound pressure level at the man's ears.

Solution:

Section 3.4.5 – Noise Standards – see Table 3.5 in the text:

OSMA Jekney

Table 3.5 ACGIH and OSHA noise limit standards for the workplace (from Internet websites and US Office of the Federal Register, 1988).

	sound	ACGIH	OSHA	
	intensity	exposure time	exposure time	
	(dBA)	(hr)	(hr)	
1 85 In @ 8 hc 1	80	24	32	
	(82) ح	(16)5	24.3	(0 100 81 -1
= ACGIN standard	\rightarrow (85)	8	16	90 JBC 8 hr =
	(88)	(4)	10.6	
<i></i>	90	1	8 <	- OSHA Standard
1 1 .	91	2	7	
change time	92	-	6	
by factor of	94	1	4.6	Change time by
2 with	95	-	(4)	factor of 2
· ·	97	0.5	3	
enry ? Th	(100)	0.25	2)	With every 5 dB
every 3 2B Change	102	-	1.5	With every 5 dB change
J	105	-	1	orange.
	110	-	0.5	
	115	-	0.25 or less	

En = Sound exposure parameter =
$$\frac{tj}{tj}$$
, permitted

At with air pollubor, if $E_1 > 1$ - Violation

 $E_1 < 1$ - okay -no

Violation

(ver similar to what we did with multiple chancish

exposure in air pollution analysis)

SEC. 3.5 THERMAN COMFORT ! HEAT STRESS

We are homeotherns" - we maintain a constant body core genbrighe

Normal body con T= 98.6°F = 37.0°C

· hypothermia -> body is too cold (core T < 96°F)

· hyperthornia - ... hot (core T > 105°F)

Metabolism - chemical reading inside the body occur "Burn" food like fuel is release energy

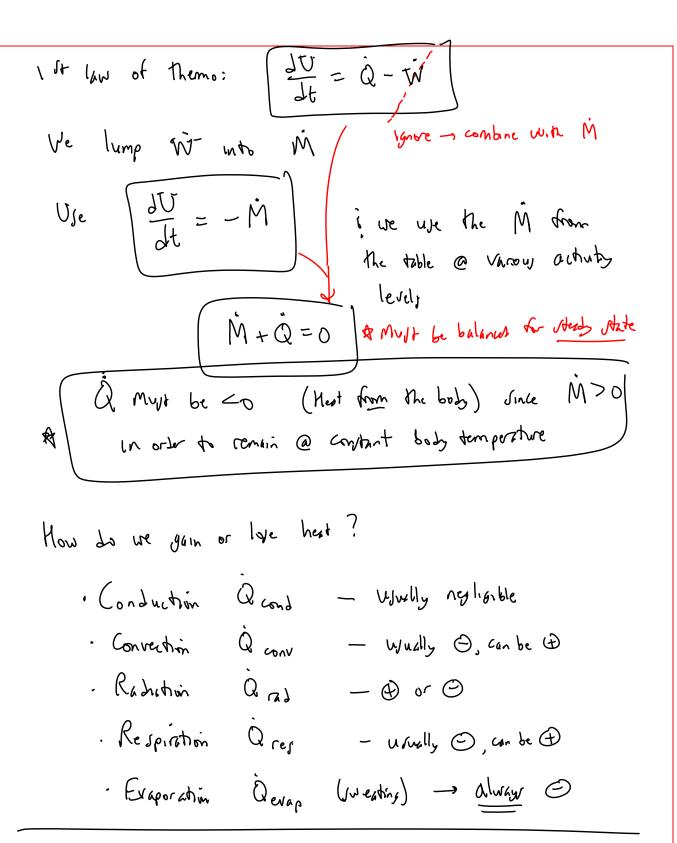
M = metabolic rate SM3 = power

units are W (watt)

Kilocalorie = Calorie = 1000 calories

Conveyion:
$$\sqrt{W} = 0.86 \frac{\text{kcal}}{\text{hr}}$$

Mb= basal metabolic rate => When a person is laying down relding, but not ileelying


Typical person = 70 kg male in good health

Some typical metabolic rates (for "average" 70-kg man) – see Table 3.6 in the text:

Table 3.6 Metabolic rate as a function of physical activity for a 70 kg adult man (abstracted from ASHRAE, 1997).

activity	metabolic rate (W)	metabolic rate (kcal/hr)
sleeping	- 72	62
seated, quiet	— 108	93)
standing, relaxed	<u>/</u> 126	108
walking about the office	180	155
seated, heavy limb movement	234	201
flying a combat aircraft	252	217
walking on level surface at 1.2 m/s	270	232
housecleaning	- 284	244
driving a heavy vehicle	333	286
calisthenics/exercise	- 369	317
heavy machine work	423	364
handling 50-kg bags	423	364
playing tennis	- 432	372
playing basketball	657	565
heavy exercise	- 900	774

e.g. Avery, man borny =
$$100 \frac{kG1}{hr}$$
 avg. for 24 hry require; 2400 kcal of food for day

Next time - we will look @ Equations for these heat transfer rates.