ME 405 Fall 2006 Professor John M. Cimbala Lecture 11 09/29/2006

Today, we will:

- Continue our discussion of Thermal Comfort and Heat Stress in Section 3.5
- Do some example problems
- Discuss Odors in Section 3.6
- Finish the rest of Chapter 3
- Do Candy Questions for Candy Friday

Continuation from last time – Thermodynamics of the human body:

First law of thermo becomes $\dot{M} + \dot{Q} = 0$, where \dot{M} is the body's metabolic rate, which includes any work (exercise or activity) being done by the body, and \dot{Q} is the net rate of heat transfer to the body. Note: Since \dot{M} is always positive, \dot{Q} must always be negative.

Various ways to gain or lose heat from the body:

Conduction \dot{Q}_{cond} : can be + or -, but usually is negligible

Convection \dot{Q}_{conv} : can be + or -, but usually negative unless outside air > 98.6°F

Radiation \dot{Q}_{rad} : can be + or -, depending on temperature of walls, etc.

Respiration \dot{Q}_{equal} : can be + or -, but usually negative unless outside air > 98.6°F Conduction \dot{Q}_{equal} : always negative (can't gain heat by sweating) $e^{\sqrt{r}}$

(A) into boly

Solve for Qerrap & call it Qerrap, req.

Table 3.8Heat stress index (adapted from ASHRAE, 1997).

HSI (%)	consequence of 8-hr exposure
< 0	Indicates varying degrees of stress due to hypothermia.
0	No thermal strain.
10-30	Mild to moderate heat stress. Manual dexterity and mental alertness may
	suffer but there is little impairment to perform heavy work.
40-60	Severe heat stress. Health may be threatened unless physically fit. This
	condition should be avoided by people with cardiovascular or respiratory
	impairment or chronic dermatitis.
70-90	Very severe heat stress. Only specially selected people are capable of
	sustaining these conditions for 8 hrs. Special care must be taken to
\mathcal{O}	replace water and salt.
100	Maximum heat stress. Only acclimated, physically fit young people can
	withstand this for 8-hrs.
>100)	Indicates varying degrees of stress due to hyperthermia.

Example

Given: Pete is playing basketball out in the sun on a hot day:

- $T_a = 86^{\circ}\text{F} = 30^{\circ}\text{C}$ (ambient air temperature, also dry bulb air temperature)
- $\Phi_a = 60\%$ (relative humidity of ambient air)
- $T_G = 120^{\circ}\text{F} = 48.89^{\circ}\text{C}$ (globe temperature due to radiation)
- $U_a = 4.0 \text{ m/s}$ (average ambient air velocity)
- $A_s = 1.8 \text{ m}^2$ (skin surface area)
- K = 0.75 (fraction of exposed skin)

To do: Calculate Pete's heat stress index. Is it dangerous for Pete to play basketball under these conditions?

Solution:

Table 3.6 - barkedball -
$$\dot{M} = 565 \frac{kal}{hr} = 9.417 \frac{kcd}{min}$$

Table 3.6 - barkedball - $\dot{M} = 565 \frac{kal}{hr} = 9.417 \frac{kcd}{min}$
Table A-17 - $(e_{Ta} = 30^{\circ}C_{+}, P_{VH0} = 4.246 \frac{kla}{la}$
 $e_{Ts} = 35^{\circ}C_{+}, P_{VH0} = 5.628 \frac{kla}{la}$
Reduktion:
Eq. 3.42 $Tw = \left(T_{4}^{4} + (0.248 \frac{ki0}{U_{a}}, U_{a}^{0.5})(T_{6} - T_{a})\right)^{0.25}$
 $v_{Je} K not^{\circ}C_{+}$
 $Tw = 376.64 \frac{k}{c}$
Eq. 2.43 $\dot{Q}_{12} = 0.0728 A_{5} K (T_{12} - T_{5}) = \frac{(.732 \frac{kcd}{min})}{(T_{4} - T_{5})}$
 $= -2.041 \frac{kcd}{min}$
 $Respondent: $\dot{Q}_{12} = -2.041 \frac{kcd}{min}$
Eq. 3.41 $= -0.594 \frac{kcd}{min}$$

Table 3.10 Comparison of odor recognition threshold and OSHA PEL for various chemicals (maximum value of odor threshold to two significant digits, abstracted from Appendix A.20).

material	odor recognition	PEL (PPM)	
	threshold (PPM)		
n-butyl acetate	20.		150
n-butyl mercaptan	9.0 x 10 ⁻⁴	<٢	10
carbon monoxide	no odor		50
ethylene oxide	780	>>	1
hydrogen cyanide	4.5	1	10
methyl alcohol	20,000	>>	200
methyl bromide	1,000	2)	5
methyl formate	2,800	>	100
methyl	0.34	~	100
methacrylate			
methylene chloride	620	>	25
nickel carbonyl	30.		0.001
triethylamine	0.27		25
xylidene	0.0049	<<	5

Sec. 3.7 Radiation Sec. 3.8 General Safety Sec. 3.9 Engr. Economics Browse

Next week - start Chap. 4