ME 405 Fall 2006 Professor John M. Cimbala Lecture 26 11/06/2006

Today, we will:

- Discuss the influence of local ventilation on general ventilation
- Discuss Control of Vapors from Open Surface Vessels in Section 6.2
- Do some example problems capture of vapors
- Discuss Design Plates and the ACGIH Ventilation Manual in Section 6.3
- If time, discuss Bulk Materials Handling in Section 6.4

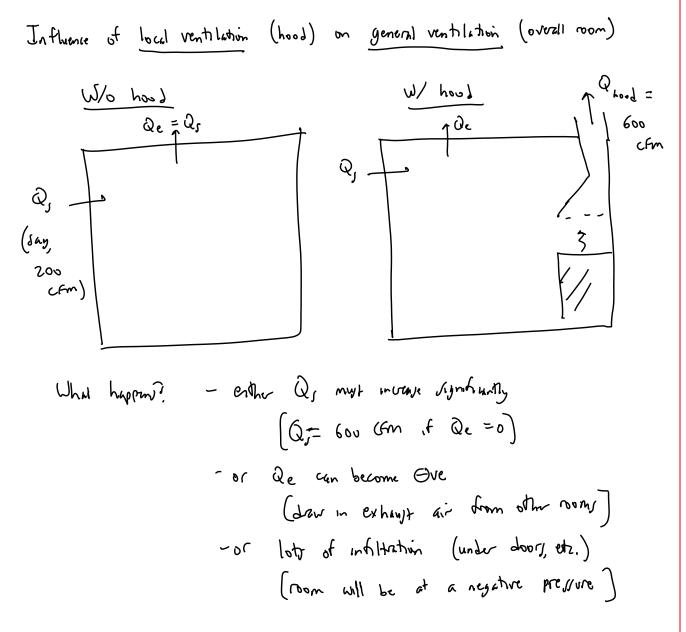


Table 6.2 Hazard potential and rate of contaminant evolution (abstracted from ACGIH, 2001).

hazardhealth standardpotentialgas or vapor (P)			health standard for \underline{mist} (mg/m ³)		flash point (°F)	
A 0 to 10		(PEL)	$0 \text{ to } 0.1 (P \in L)$		-	
B	> 11 to 100	11 to 100		20.11 to 1.0		00
C	101 to 500	101 to 500		• 1.1 to 10		200
D	over 500	over 500		over 10		00
rate	liquid temperature de		ees below boiling	evaporation time ¹		gassing ²
	(°F)		(°F)	(hr)		
1	over 200		0 to 20	0 to 3 (fast)		high
(2)	150 to 200 175		21 to 50	3 to 12 (medium)		medium
3	94 to 149		51 to 100	12 to 50 (slow)		low
4	under 94		over 100	over 50 (nil)		nil

¹ time for 100% evaporation

² extent to which gas or vapor are generated: rate depends on the physical process and the solution concentration and temperature

Define the <u>class</u> as the combination of the two. e.g. <u>class</u> AZ CI D3 Atep 3: Determine the control velocity in FPM (fr/min) See table 6.3

Table 6.3 Minimum control velocities (FPM) for undisturbed locations (abstracted from ACGIH, 2001).

	enclosi	ng hood	lataral	canopy hood ⁴		
class	1 side open	2 sides open	lateral hood ¹	3 sides open	4 sides open	
$A1^2, A2^2$	100	150	150	do not use	do not use	
$A3^2, B1, B2, C1$	75	100	100	125	175	
$B3^3, C2^3, D1^3$	65	90	75	100	150	
$A4^2, C3^3, D2^3$	50	75	50	75	125	
B4, C4, D3 ³ , D4	adequate general room ventilation required					

¹ use Table 6.4 to compute the volumetric flow rate

² do not use a canopy hood for hazard potential A processes

 3 where complete control of hot water is desired, design as next highest class

⁴ use Q = 1.4(PD) control velocity, where P is hood perimeter and D is distance between vessel and hood face (27)

Step 4: Determine, Q, The volume flow rate Based on control velocity Minimum recommended See Table 6.4

		netric flow ted from AC	-	t surface ar	ea (CFM/ft	²) for lateral exhaust	
control	² asp	A= Surface					
velocity (FPM)	0 - 0.09		0.25 - 0.49 0.7		1.0 - 2.0	A = surface wer of the evap lyous	
tank against wall or baffled ¹							
50	50	60	75	90	100	- Valuer	
75	75	90	110	130	150	e valuer in CFM/fyz	
100	100	125	(150)	175	200		
150	150	190	225	250^{3}	250^{3}	CFM/ftz	
free-standing tank ¹							
50	75	90	100	110	125	A	
75	110	130	150	170	190		
100	150	175	200	225	250	$Q = \left(\frac{Q}{2}\right) \left(A\right)$	
150	225	250 ³	250^{3}	250^{3}	250^{3}	(¹)(A) ~	

¹ use half width to compute W/L for inlet along tank centerline or two parallel sides of tank ² inlet slot along the long side (L); if 6 < L < 10 ft, multiple takeoffs are desirable; if L > 10 ft, multiple takeoffs in plenum are necessary if:


- slot on one side is suitable • W = 20 inches:
- 20 <W <36 inches: slots on both sides are desirable
- 36 <W <48 inches: slots on both sides are necessary unless all other conditions are optimum
- lateral exhausts are not usually practical, use push-pull or enclosures • W > 48 inches:
- W > 48 inches: lateral exhausts are not usually practical, use push-pull or enclose it is undesirable to use lateral exhaust when W/L > 1 and not practical when W/L > 2
- ³ while control velocities of 150 FPM may not be achieved, 250 CFM/ft² is considered adequate for control

Example (Example 6.3 in text – Pickling Copper in Sulfuric Acid)

Given: Copper plates are dipped from above into a tank of water and sulfuric acid. The tank is 10.0 ft long and 3.0 ft wide. The bath temperature is $175^{\circ}F$, and generates acid mist fumes. The liquid mixture boils at 225°F.

To do: Compare the required volume flow rate for:

- Case A: tank against a room wall, with a lateral exhaust on one side
- Case B: free-standing tank with lateral exhausts along both long sides of the tank

Solution:

Note: Dithuit to capture acid must in either care due to the cardle effect

$$\frac{\operatorname{Atg} Y}{\operatorname{CAJE} A} - \frac{\operatorname{Talk}}{\operatorname{L}} 4 \operatorname{Apart} \operatorname{cukll}, \operatorname{Juchm} \operatorname{one} \operatorname{Ale} \operatorname{ody}$$

$$\frac{\operatorname{CAJE} A}{\operatorname{L}} - \frac{\operatorname{Talk}}{\operatorname{L}} 4 \operatorname{Apart} \operatorname{cukll}, \operatorname{Juchm} \operatorname{one} \operatorname{Ale} \operatorname{ody}$$

$$\frac{\operatorname{CAJE} A}{\operatorname{L}} - \frac{\operatorname{Talk}}{\operatorname{L}} 4 \operatorname{Apart} \operatorname{cukll}, \operatorname{Juchm} \operatorname{one} \operatorname{Ale} \operatorname{ody}$$

$$\frac{\operatorname{Cadel} \operatorname{Vol} \operatorname{of} \operatorname{IO} \operatorname{Fr}^{3}}{\operatorname{L}} = 0.30 \rightarrow \operatorname{get} \operatorname{Q/A} = 150 \operatorname{CFm}/\operatorname{fr}^{2}$$

$$\frac{\operatorname{Q} = (Q_{A})A}{\operatorname{A}} = (100 \operatorname{fr}^{3}/\operatorname{nie} \operatorname{fr}^{2})(10 \operatorname{fr})(3 \operatorname{fr}) = \frac{4100 \operatorname{CFm}}{\operatorname{IO} \operatorname{CFm}}$$

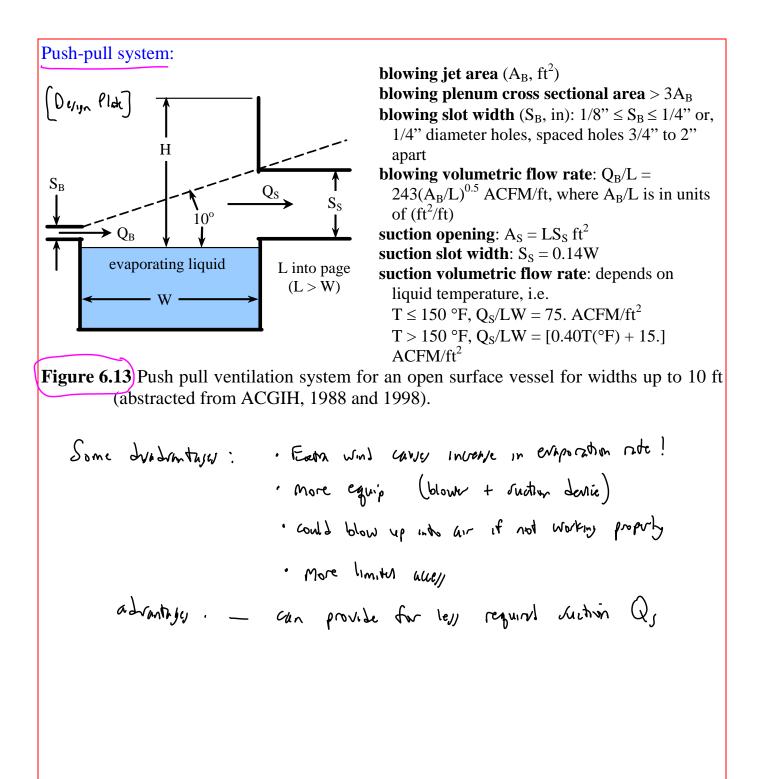
$$\frac{\operatorname{CAJE} B}{\operatorname{CAJE} B} \quad \operatorname{Free} \operatorname{fhm} \operatorname{deg} \operatorname{tark}, \operatorname{Iabtal} \operatorname{Invol} \operatorname{or} \operatorname{both} \operatorname{Algg}$$

$$\operatorname{Atget} (A_{1} \rightarrow \operatorname{Control}) \operatorname{velody} = 100 \operatorname{Fom} 4 \operatorname{provinv}/\operatorname{J}$$

$$\operatorname{Jke} (A_{2} \rightarrow \operatorname{Control}) \operatorname{velody} = 100 \operatorname{Fom} 4 \operatorname{provinv}/\operatorname{J}$$

$$\operatorname{Jke} (A_{2} \rightarrow \operatorname{Control}) \operatorname{velody} = 100 \operatorname{Fom} 4 \operatorname{provinv}/\operatorname{J}$$

$$\operatorname{Jke} (A_{1} \rightarrow \operatorname{Jee} \operatorname{furbarde} 1)$$

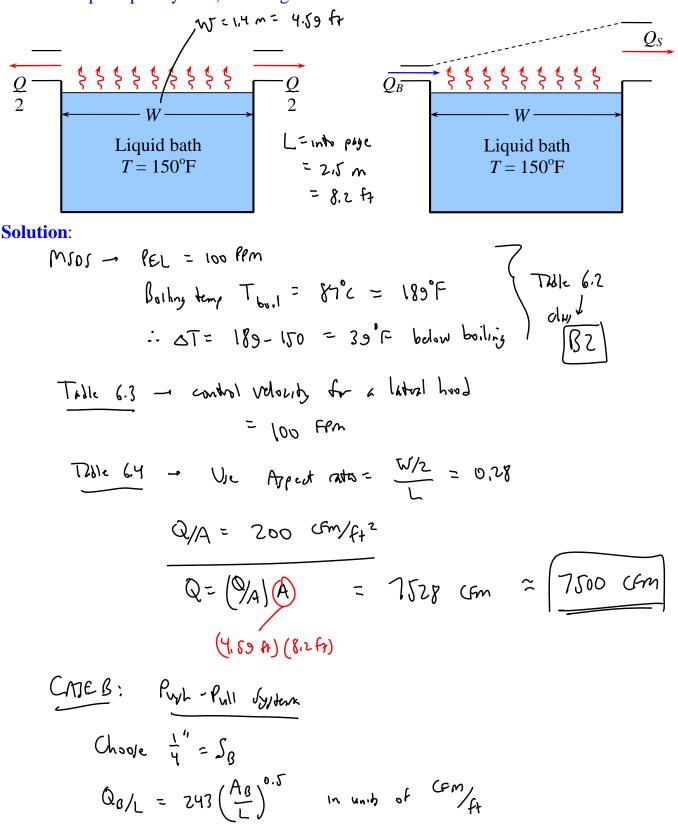

$$\operatorname{Ue} \operatorname{Va} \operatorname{fur} \operatorname{Jue} \operatorname{Alg}: \operatorname{Que} \operatorname{furbarde} 1$$

$$\operatorname{Ue} \operatorname{Va} \operatorname{fur} \operatorname{Alg}: \operatorname{Que} \operatorname{furbarde} 1$$

$$\operatorname{Vale} \operatorname{Va} \operatorname{Alg}: \operatorname{Que} \operatorname{furbarde} \operatorname{Que} \operatorname{furbarde} 1$$

$$\operatorname{Vale} \operatorname{Alg} \operatorname{cuke} \operatorname{Alg}: \operatorname{Que} \operatorname{furbarde} \operatorname{due} \operatorname{furbarde} 1$$

$$\operatorname{Vale} \operatorname{Alg} \operatorname{cuke} \operatorname{Furbarde} \operatorname{Alg}: \operatorname{Que} \operatorname{furbarde} \operatorname{furbarde}$$



Example (Example 6.4 in text – Control of Vapor from an Open Vessel)

Given: A free-standing tank containing liquid trichloroethylene (TCE) at 150° F is used for degreasing operations. The tank is 1.4 m wide and 2.5 m long.

To do: Compare the required volume flow rate for:

- Case A: free-standing tank with lateral exhausts along both long sides of the tank
- Case B: push-pull system, as in Fig. 6.13

Ag = area of blowing jet =
$$S_{g.L}$$

 $Q_g = 287.6$ Gm or $Q_g = 290$ Gm Blowing
 $S_s = ruchon slot with = 0.14 W = -8^{47}$
 $Q_s = 75 LW$ since $T \leq 150^{\circ}F$
 $= 75 (8.2 fr)(4.59 fr) \rightarrow Q_s = 2800$ Gm
 $Q_r = 2800$ Gm
 $Q_r = 1000$ Gr Level than half of Q for laber such mine 100
Bottom line $\rightarrow Q_s$ (such in vol. from rate) is significantly level
the push - pull system, but there are advertised of the push - pull system.

- Jo, there is always a trade-off !