ME 405 Fall 2006 Professor John M. Cimbala Lecture 39 12/08/2006

Today, we will:

- Discuss terminal settling speed in Stokes flow in Section 8.5
- Discuss gravimetric settling in rooms in Section 8.7
- Discuss gravimetric settling in ducts in Section 8.8
- Discuss inertial separation particles in curved flow in Section 8.11
- Do Candy Questions for Candy Friday

Terminal settling video sty in Stake from
if
$$Re \leq 0.1$$
, $C_0 = \frac{24}{Re} = \frac{24}{p \vee e \partial e}$
Can solve for V_{\pm} in closes form
 $V_{\pm} = \int \frac{4}{3} \frac{(P_{\pm} P) \partial_{e} g C}{P \partial e}$
 $V_{\pm} = \int \frac{P_{\pm} P}{f} \frac{P_{\pm} \partial_{e} \partial_{e} g C}{P \partial e}$
 $V_{\pm} = \frac{P_{\pm} P}{P} \frac{P_{\pm} \partial_{e} \partial_{e} g C}{P \partial e}$
 $V_{\pm} = \frac{P_{\pm} P}{P} \frac{P_{\pm} \partial_{e} \partial_{e} g C}{P \partial e}$
 $V_{\pm} = \frac{P_{\pm} P}{P} \frac{P_{\pm} \partial_{e} \partial_{e} g C}{P \partial e}$
 $V_{\pm} = \frac{P_{\pm} P}{P} \frac{P_{\pm} \partial_{e} \partial_{e} g C}{P \partial e}$
 $V_{\pm} = \frac{P_{\pm} P}{P} \frac{P_{\pm} \partial_{e} \partial_{e} g C}{P \partial e}$
 $V_{\pm} = \frac{P_{\pm} P}{P} \frac{P_{\pm} \partial_{e} \partial_{e} g C}{P \partial e}$
 $V_{\pm} = \frac{P_{\pm} P}{P} \frac{P_{\pm} \partial_{e} \partial_{e} g C}{P \partial e}$
 $V_{\pm} = \frac{P_{\pm} P}{P} \frac{P_{\pm} \partial_{e} \partial_{e} g C}{P \partial e}$
 $V_{\pm} = \frac{P_{\pm} P}{P} \frac{P_{\pm} \partial_{e} \partial_{e} g C}{P \partial e}$
 $V_{\pm} = \frac{P_{\pm} P}{P} \frac{P_{\pm} \partial_{e} \partial_{e} g C}{P \partial e}$
 $V_{\pm} = \frac{P_{\pm} D_{e}^{2}}{P \partial e}$
 $V_{\pm} = \frac$

When st
$$\approx 7 \times 1$$
 me cove, when is 99.9% of its find value
 $3 + \frac{72}{72} + \frac{1}{100}$
Here, it takes $\approx 7.2\%$ for a particle to reach 99.9%
of its final (terminel) setting speed
eg e $D_{p} = 50\,\mu\text{m} \rightarrow 50^{\circ}$ air e 570°
 $C = 1.003$
 $72^{\circ} c = 5.3 \times 10^{\circ} s$
 $C = 1.003$
 $72^{\circ} c = 5.3 \times 10^{\circ} s$
 $C = 0.0575$
 $THV V VERY SHORT$
Composed to time subly in a typical those, $72^{\circ}pC \vee 51^{\circ}m^{\circ}t$
We can approximate by following that
particle "immediates," fails e speed V_{E}
 V_{e}
 V_{e}

Figure 8.19 Gravimetric settling of a monodisperse aerosol in a horizontal duct with uniform air flow: (a) laminar conditions, (b) well-mixed conditions.

At defined particle diameters. The setting speed
$$V_{E}$$
 will be defined,
but O_{0} will termin the same.

Lammir moded

 V_{0}

 V_{0}

 V_{0}

 V_{0}

 V_{0}

 V_{0}

 V_{0}

 V_{1}

 V_{2}

 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}
 V_{2}

Table 8.8 Gravimetric settling of unit density spheres in ducts; duct velocity = 22.86 m/s (4500 FPM), air at STP.

			efficiency = 1%		efficiency = 10%	
	D _p (μm)	\mathbf{v}_{t} (m/s)	(x/H) _{lam}	(x/H) turb	(x/H) _{lam}	(x/H) _{turb}
J	10	3.1×10^{-3}	74.6	74.6	745.8	785.8
	50	7.3×10^{-2}	3.12	3.12 mixed	31.2	32.9
	100	2.5 x 10 ⁻¹	0.92	0.92	9.2	9.7
	200	0.7	0.33	0.33	3.3	3.4
	600	2.5	0.09	0.09	0.9	1.0
	1,000	4.0	0.06	0.06	0.6	0.6

Unit density means $SG = 1.00 \rightarrow P = 1000 \frac{kg}{m^3}$ (density of water)

Figure 8.24 Particle trajectory (dashed line) and mass concentration in a curved duct of rectangular cross section for the laminar flow model; particle enters at $r = r_{in}$, $\theta = 0$, and impacts the outer wall at $r = r_2$, $\theta = \theta_{impact}$; particle shown at arbitrary time.

Figure 8.25 Particle trajectory (dashed line) and mass concentration in a curved duct of rectangular cross section for the well-mixed model; particle enters at $r = r_{in}$, $\theta = 0$, and impacts the outer wall at $r = r_2$, $\theta = \theta_{impact}$; particle shown at arbitrary time at location (r, θ). Four control volumes are shown with degree of shading indicating how mass concentration decreases with θ .