Today, we will:

• Continue example problem from last time – EFs from combustion chemistry
• Do some example problems
• If time, discuss *equivalence ratio* for combustion

Example: EFs from combustion of natural gas (assume it is all methane) (continued)

Given: Natural gas is burned in a power plant. There is no APCS. Exhaust gases go up the stack at \(T = 500\, \text{K}\) and \(P = 100\, \text{kPa}\).

(a) **To do:** Estimate the mol fraction, mass fraction, mass concentration, and molar concentration of CO\(_2\) going up the stack. Give all answers to 3 significant digits.

(b) **To do:** Estimate (from first principles and chemistry) the EF of CO\(_2\) emitted by burning methane, and compare with EPA’s published EFs for burning natural gas (NG).

Solution (continued from last class): We had,

Chemical equation:

\[
\text{CH}_4 + a(\text{O}_2 + 3.76\, \text{N}_2) \rightarrow b\text{CO}_2 + c\text{H}_2\text{O} + d\text{N}_2
\]

Solve for the molar coefficients: \(a = 2, b = 1, c = 2, d = 3.76a = 7.52\). So, the equation is

\[
\text{CH}_4 + 2(\text{O}_2 + 3.76\, \text{N}_2) \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} + 7.52\text{N}_2
\]

Notice that *all* the carbon in the fuel is converted to carbon dioxide in the products.

(a) Now calculate *mol fraction, mass fraction, mass concentration, and molar concentration* of CO\(_2\) going up the stack. *Note:* The exhaust going up the stack includes *all* the combustion products on the right side of the chemical equation, i.e., CO\(_2\), H\(_2\)O, and N\(_2\).
(b) Estimate (from first principles and chemistry) the EF (emission factor) of CO$_2$ emitted by burning methane, and compare with EPA’s published EFs for burning natural gas (NG).

Solution:

- First, we define *our* EF as the mass of CO$_2$ emitted per mass of fuel burned.

$$EF = \frac{m_{\text{CO}_2}}{m_{\text{CH}_4}}$$

- The key is that for **stoichiometric combustion**, every kmol of methane fuel emits one kmol of CO$_2$ into the atmosphere. Thus,

$$EF = \frac{m_{\text{CO}_2}}{m_{\text{CH}_4}} = \frac{n_{\text{CO}_2} M_{\text{CO}_2}}{n_{\text{CH}_4} M_{\text{CH}_4}} = 44.0095 \frac{1000 \text{ kg CH}_4}{16.04246 \text{ Mg CH}_4}$$

$$= 2.740 \frac{\text{kg CO}_2}{\text{kg CH}_4} \left(\frac{1000 \text{ kg CH}_4}{\text{Mg CH}_4} \right) = 2740 \frac{\text{kg CO}_2}{\text{Mg CH}_4}$$

- So, our estimated EF is $EF = 2740 \frac{\text{kg CO}_2}{\text{Mg CH}_4}$. Call this $(EF)_{\text{ours}} = 2740 \frac{\text{kg CO}_2}{\text{Mg CH}_4}$.

- Let’s look up and compare EPA’s published EFs for burning natural gas. I found 3:

$$EF = 53 \frac{\text{kg CO}_2}{\text{thousand SCF NG}} \quad \text{and} \quad EF = 120,000 \frac{\text{lbm CO}_2}{10^6 \text{ SCF NG}} \quad \text{and} \quad EF = 1135 \frac{\text{lbm CO}_2}{\text{MW-hr elec}}$$

- Problem: EPA’s published EFs and our EF are in different units. We must convert:
Now let’s look at the third EF from EPA, and
\[EF = 1135 \frac{\text{lbm CO}_2}{\text{MW-hr elec}} \].

Notice the denominator – this is perhaps a more practical EF for power plants because we typically know how much electrical power is being produced by the power plant, so this EF provides a quick estimate of how much CO\(_2\) is emitted for a power plant that burns methane.

First convert to kg instead of lbm:
\[EF = 1135 \frac{\text{lbm CO}_2}{\text{MW-hr elec}} \left(\frac{1 \text{ kg}}{2.204 \text{ lbm}} \right) = 514.83 \frac{\text{kg CO}_2}{\text{MW-hr elec}} \]

Let’s call this the third \((EF)_{EPA}\) → \((EF)_{EPA} = 514.83 \frac{\text{kg CO}_2}{\text{MW-hr elec}}\).

Compare to our previous estimate \((EF)_{ours}\) from Part (b) → \((EF)_{ours} = 2743.3 \frac{\text{kg CO}_2}{\text{Mg CH}_4}\).

But how to compare these two EFs with such drastically different denominators?

The key here is to take into account the overall power plant efficiency, which is typically less than 40% for a standard power plant producing electricity.

We define the power plant efficiency as
\[\eta_{\text{plant}} = \frac{\text{actual power produced}}{\text{maximum possible power produced}} \quad \text{or} \quad \eta_{\text{plant}} = \frac{\text{actual energy produced}}{\text{maximum possible energy produced}} \]

To do: Estimate the overall power plant efficiency (%) that EPA assumed in order to obtain the above emission factor that we call \((EF)_{EPA}\).

Solution:
Final answer: The answer (in variable form) is $\eta_{\text{plant}} = \frac{(EF)_{\text{ours}}}{(EF)_{\text{EPA}} \cdot \text{HHV}}$.

Now we plug in the numbers to get the final numerical answer, being very careful of units!

Plug in $\begin{align*}
(EF)_{\text{EPA}} &= 514.83 \frac{\text{kg CO}_2}{\text{MW-hr elec}} \\
(EF)_{\text{ours}} &= 2743.3 \frac{\text{kg CO}_2}{\text{Mg CH}_4} \\
\text{HHV} &= 55.5 \frac{\text{MJ}}{\text{kg CH}_4}
\end{align*}$.
Equivalence ratio:
Consider the chemical equation above for burning a fuel, like methane,
\[\text{CH}_4 + a(\text{O}_2 + 3.76 \text{ N}_2) \rightarrow b\text{CO}_2 + c\text{H}_2\text{O} + d\text{N}_2 \]

Notation:
- \(a = \text{actual} \) molar coefficient: molar coefficient \(a \) in the combustion chemical equation \((a\) is not necessarily the \textit{stoichiometric} value – can be smaller or larger than \(a_{\text{stoich}} \)).
- \(a_{\text{stoich}} = \text{stoichiometric} \) molar coefficient: molar coefficient \(a \) in the combustion chemical equation that leads to exact stoichiometric balance, or \textit{ideal combustion}. Again, this means that \textit{all} the carbon in the fuel gets converted to carbon dioxide in the combustion gases (exhaust gases).
- \((F/A)_n = \text{molar fuel-to-air ratio} = \frac{\text{(# mols of fuel)}}{\text{(# mols of air)}} = 1/a.\)
 - \((F/A)_n = \text{actual molar fuel-to-air ratio} = 1/a.
 - \((F/A)_{n, \text{stoich}} = \text{stoichiometric molar fuel-to-air ratio} = 1/ a_{\text{stoich}}.\)

Equivalence ratio \(\Phi \) is defined as the ratio of the \textit{actual} fuel/air ratio to the \textit{stoichiometric} fuel/air ratio.

\[
\text{Equivalence ratio} = \Phi = \frac{(F/A)_{n}}{(F/A)_{n, \text{stoich}}} = \frac{1/a}{1/a_{\text{stoich}}} = \frac{a_{\text{stoich}}}{a}
\]

- If \(\Phi = 1 \), the combustion is \textit{stoichiometric}.
- If \(\Phi < 1 \), the combustion is \textit{lean} (there is excess air).
- If \(\Phi > 1 \), the combustion is \textit{rich} (there is too much air, and incomplete combustion).