Gaussian Plume Model and Dispersion Coefficients

Author: John M. Cimbala, Penn State University
Latest revision: 17 February 2020

Procedure to calculate the dispersion coefficients σ_y and σ_z:

1. Determine the Stability Classification of the atmosphere, A, B, ... using Table 1.
2. Determine constants $a, b, ..., f$ using Table 2.
3. Calculate $\sigma_y = ax^2$ and $\sigma_z = cx^2 + f$, with x in units of km and σ_y and σ_z in units of m.

Gaussian plume model to estimate mass concentration of air pollutant at location (x, y, z):

With ground absorption:

$$c_j = \frac{m_{js}}{2\pi U \sigma_y \sigma_z} \exp \left\{ -\left[\frac{1}{2} \left(\frac{y}{\sigma_y} \right)^2 + \left(\frac{z-H}{\sigma_z} \right)^2 \right] \right\}$$

where $H = h_s + \delta h$ = effective stack height, h_s is the actual stack height, and δh is the additional plume elevation due to buoyancy of the plume.

With ground reflection:

$$c_j = \frac{m_{js}}{2\pi U \sigma_y \sigma_z} \exp \left\{ -\left[\frac{1}{2} \left(\frac{y}{\sigma_y} \right)^2 + \left(\frac{z-H}{\sigma_z} \right)^2 \right] \right\} + \exp \left\{ -\left[\frac{1}{2} \left(\frac{y}{\sigma_y} \right)^2 + \left(\frac{z+H}{\sigma_z} \right)^2 \right] \right\}$$