Today, we will:
- Continue introductory material – fundamentals and review, gas mixtures
- Do some example problems
- Do some poll questions (some practice ones and some real ones)

Given: Consider a tank filled with air plus some gaseous contaminants (pollutants).

Assumptions and Approximations:
1. All gases are ideal gases.
2. All gases are well-mixed.

To do: Write equations and conversions for mass fraction, mol fraction, partial pressure, partial volume, etc.

We write: \(m_t = \sum_{j=1}^{J} m_j = \sum m_j = \sum m_j \) (total mass is the sum of the mass of each species)

Similarly, \(n_t = \sum_{j=1}^{J} n_j = \sum n_j = \sum n_j \) (total number of mols is the sum of the number of mols of each species)

Define \(f_j = \text{mass fraction of species } j \)

\[f_j = \frac{m_j}{m_t} \]

\(\{ f_j \} = \{ 1 \} \)

Define \(y_j = \text{mol fraction of species } j \)

\[y_j = \frac{n_j}{n_t} \]

\(\{ y_j \} = \{ 1 \} \)

\([n_j] = \text{ppm} \) part per million
or \([y_j] \text{ in PPM} = 1000 \text{ to billion} \]

\[
\begin{align*}
y_{co} &= 4.1 \text{ PPM} \\
&= 4100 \text{ PPB} \\
&= 4.1 \times 10^{-6} \\
\text{or} &= 0.0000041
\end{align*}
\]

\(\text{Ideal Gas for Bulk Mixture} \quad P_A = n_t R u T\)

\(\text{PARTIAL PRESSURE} = P_j = \text{Pressure that species } j \)
\(\text{would exert if it were the only gas in the container of same volume } A \text{ i temp } T\)

\(\text{Dalton's law of partial pressure} \quad P = \sum_{j=1}^{J} P_j\)

\(\text{Ideal gas law works for one species } j \quad P_j A = n_j R u T \quad \text{note: } M_j = \frac{m_j}{n_j}\)
Molecular weight of the "bulk" mixture: or total mixture

\[M_t = \frac{m_t}{n_t} = \frac{\sum m_j}{n_t} = \frac{\sum (n_j M_j)}{n_t} = \sum \left(\frac{n_j}{n_t} \right) M_j \]

\(m_j = n_j M_j \)

\(n_t = \text{constant, so can move it in or out of } \sum \)

\[M_t = \sum (y_j M_j) \]
Example: Stoichiometric mass balance
Given: The following chemical equation with unknown stoichiometric coefficient \(a \):
\[
\text{Al(OH)}_3 + a\text{H} \rightarrow \text{Al} + 3\text{H}_2\text{O}
\]
To do: Calculate coefficient \(a \).
Solution:

\[
\text{H}_2\text{O} \quad 3 + a = 6 \rightarrow \boxed{a = 3}
\]

\[
\begin{align*}
\text{Al:} & \quad 1 = 1 \\
\text{O:} & \quad 3 = 3 \\
\text{H:} & \quad 6 = 6
\end{align*}
\]

Example: Partial pressure and mol fraction
Given: A tank contains air and a small amount of gaseous pollutant, species \(j \). The mol fraction of species \(j \) is 2.0 PPM. The pressure and temperature in the tank are 100 kPa and 300 K, respectively.
To do: Calculate the partial pressure of species \(j \), i.e., calculate \(P_j \) in units of kPa.
Solution:

Hint: These equations may be useful: \[
y_j = \frac{n_j}{n_t}, \quad PV = n_t R u T, \quad P_j V = n_j R u T
\]

\[
\left\{ \begin{array}{l}
\text{Note: in PE ~ Do not write anything like} \quad 7.3 \times 10^{-4} \\
\quad \text{or} \quad 7.3 \times 10^4 \\
\quad \text{Write} \quad 0.00073 \quad \text{or} \quad 7.3 \times 10^{-4}
\end{array} \right.
\]

\[
\frac{P_j}{P} = \frac{n_j}{n_t} \frac{R u T}{R u T} = \frac{n_j}{n_t} = y_j \rightarrow \boxed{P_j = y_j P}
\]

\[
P_j = \left(2.0 \times 10^{-6} \right) (100 \text{ kPa}) = 0.00020 \text{ kPa}
\]

or \[2.0 \times 10^{-4}\]
Example: Ideal gas mixture

Given: A simple natural gas mixture is composed of three chemicals:

- Methane (CH₄), 90% mol fraction
- Ethane (C₂H₆), 8% mol fraction
- Propane (C₃H₈), 2% mol fraction

To do: Calculate the bulk molecular weight of the natural gas.

Solution:

First, I used the on-line periodic table to find the molecular weights of each component molecule:

- Carbon, C, \(M = 12.0107 \) g/mol
- Hydrogen, H, \(M = 1.00794 \) g/mol

\[
\begin{align*}
M_{\text{CH}_4} &= 12.0107 + 4(1.00794) = 16.04246 \text{ g/mol} \\
M_{\text{C}_2\text{H}_6} &= 30.06904 \text{ g/mol} \\
M_{\text{C}_3\text{H}_8} &= 44.09562 \text{ g/mol}
\end{align*}
\]

\[
M_t = \sum (x_i M_j)
\]

\[
= (0.90)(16.04246) + (0.08)(30.06904) + (0.02)(44.09562)
\]

\[
= 17.7257 \text{ g/mol}
\]

\[M_t = 17.7 \text{ g/mol}\]

Use this for intermediate calculation to avoid roundoff error.
"Manipulation"

e.g. Given \(f_j = \frac{m_j}{m_t} \)

To write \(f_j \) in terms of mol fraction (\(y_j \))

\(\text{molecular weight} \) (\(M_j \))

Soln:

\[
f_j = \frac{m_j}{m_t} = \frac{n_j M_j}{\sum (n_j M_j)} = \frac{\frac{n_j}{n_t} M_j}{\sum (\frac{n_j}{n_t} M_j)} = \frac{y_j M_j}{\sum (y_j M_j)} = \frac{y_j M_j}{M_t}
\]

\[
\therefore f_j = y_j \frac{M_j}{M_t}
\]

OR:

\[
f_j = \frac{m_j}{m_t} = \frac{n_j M_j}{n_t M_t} = \frac{y_j M_j}{M_t}
\]