Today, we will:

- Discuss the **Gaussian puff diffusion model** (sudden burst of air pollution from a point)
- Do some example problems.

Example: Fumigating Gaussian plume

Given: A buoyant plume emitting air pollution, under the following conditions:

- Stack height = 80 m. Buoyant plume rise = 20 m above stack exit.
- The stack emits the air pollutant at a rate of 110 g/s.
- An elevated temperature inversion is present, extending from 120 m to 140 m.
- The average wind speed is a gentle 1.4 m/s.
- Both above and below the temperature inversion, the atmosphere is very unstable, and is classified as Class A.
- Far downstream, the mass concentration of the air pollutant is *well mixed* (constant) vertically between the ground and the bottom of the elevated temperature inversion, and people who are downwind of the plume are fumigated, as sketched.
- The ground *reflects* (does not absorb) the air pollutant.

To do: At the centerline of the plume ($y = 0$), and at a downwind distance of 2.0 km, estimate the mass concentration of the pollutant experienced by people near the ground.

Solution:

- Use Table 2 to obtain the coefficients for calculation of dispersion coefficients: For Class A, we have $a = 213, \ b = 0.894$.
- At a given x location, calculate the dispersion coefficient in the y direction:
 \[
 \sigma_y = ax^b, \quad \text{with } x \text{ in units of km and } \sigma_y \text{ and } \sigma_z \text{ in units of m.}
 \]

- Use the reflecting ground fumigating Gaussian plume equation at $y = 0$ (centerline) to calculate the well-mixed mass concentration at this particular value of x:

\[
C_{j,F} = \frac{\dot{m}_{j,s}}{\sqrt{2\pi U \sigma_y H_T}} \exp \left[-\frac{1}{2} \left(\frac{y}{\sigma_y} \right)^2 \right] \quad \text{at } y = 0, \quad C_{j,F} = \frac{\dot{m}_{j,s}}{\sqrt{2\pi U \sigma_y H_T}}
\]

BE CAREFUL WITH UNITS. YOU SHOULD GET $C_{j,F} = 660 \ \text{mg} \ \text{m}^{-3}$
Gaussian puff diffusion, absorbing ground:

Top view:

Diffusion in x direction

= \ldots \ y \ldots

WE CARE ABOUT THE DOSE THAT YOU ARE EXPOSED TO

D_{eq} = \text{integrate over time}
Equations for the Gaussian puff diffusion model (also on equation sheet):

Mass concentration of species \(j \), absorbing ground:

\[
c_j(x, y, z, t) = \frac{m_j}{\pi \sqrt{2 \pi} \sigma_x \sigma_y \sigma_z} \exp \left\{ -\frac{1}{2} \left[\frac{x - Ut}{\sigma_x} \right]^2 + \left(\frac{y}{\sigma_y} \right)^2 + \left(\frac{z - H}{\sigma_z} \right)^2 \right\}
\]

where \(\sigma_x = \sigma_y = ax^b \), \(\sigma_z = cx^d \).

The analysis is similar to Gaussian plumes. Note, however, \(\sigma_x \) and \(\sigma_y \) and \(\sigma_z \) are in units of m, but \(x \) is in units of m (not km).

Use these empirical values for the instantaneous diffusion coefficients, depending on atmospheric stability conditions:

We use a simpler atmospheric stability model than the one used for the Gaussian plume:

\[
\text{Only 3 stability cases: } a, b, c \text{ and } d \text{ work: } - (n+1)
\]

Table 3. Curve-Fit Constants for Instantaneous Dispersion Coefficients, Gaussian Puff Model
(adapted from Slade, 1968 as found in Heinsohn and Kabel, 1999)

<table>
<thead>
<tr>
<th>Stability condition</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstable</td>
<td>0.14</td>
<td>0.92</td>
<td>0.53</td>
<td>0.73</td>
</tr>
<tr>
<td>Neutral</td>
<td>0.06</td>
<td>0.92</td>
<td>0.15</td>
<td>0.70</td>
</tr>
<tr>
<td>Very Stable</td>
<td>0.02</td>
<td>0.89</td>
<td>0.05</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Consider a case in which \(H \) is small compared to \(x \) (explosion is at or near the ground).

If you are standing on the ground at some location \((x, y, z) = (x, y, 0)\), what is your exposure?

\[
\text{DOSE} = \int_{0}^{\infty} \text{Integral exposure over time } \, dt
\]
Define $D_j = \text{total dose}$ of species j at some location (x,y,z); $D_j = D_j(x,y,z)$:

$$D_j(x,y,z) = \int_{t=0}^{t=\infty} c_j(x,y,z,t) \, dt$$

We consider the dose on the ground ($z = 0$) only. Plugging in (1) into this integral yields

Gaussian puff diffusion – ground level dose of species j, absorbing ground:

$$D_j(x,y,0) = \frac{m_j}{\pi U \sigma_y \sigma_z} \exp \left\{ -\frac{1}{2} \left[\frac{y}{\sigma_y} \right]^2 + \frac{H^2}{\sigma_z^2} \right\}$$ \hspace{1cm} (2a)

For a reflecting ground, we add a mirror image source under the ground, just like we did for the Gaussian plume model.

By symmetry, the dose along the ground is simply doubled for the ground reflecting case:

Gaussian puff diffusion – ground level dose of species j, reflecting ground:

$$D_j(x,y,0) = \frac{2m_j}{\pi U \sigma_y \sigma_z} \exp \left\{ -\frac{1}{2} \left[\frac{y}{\sigma_y} \right]^2 + \frac{H^2}{\sigma_z^2} \right\}$$ \hspace{1cm} (2r)
Example: Gaussian puff diffusion

Given: A ground-level tank containing 10 kg of hydrogen cyanide (HCN) ruptures at a chemical plant early in the morning. The atmosphere is very stable, and a gentle breeze is blowing at \(U = 1.5 \text{ m/s} \). The ground absorbs the HCN on contact. Workers downwind of the explosion are exposed to the HCN.

To do:

(a) Estimate the dose of HCN that would constitute hazardous conditions for the workers. In other words, estimate the maximum safe dose \(D_{j,\text{max}} \) in units of mg \(\cdot \) s/m\(^3\).

Solution:

Look up HCN on NIOSH Pocket Guide (SDS) -

\[ST = \frac{5}{m^3} \rightarrow ST \text{ defined for } 15\text{ min exposure} \]

Calc. \(D_{j,\text{max}} = \left(\frac{5}{m^3} \right) \left(15 \text{ min} \right) \left(\frac{60}{1\text{ min}} \right) = 4500 \text{ mg} \cdot \text{s/m}^3 \)

(b) Predict the ground level dose directly downwind at \(x = 1.5 \text{ km} \).

Solution:

First determine what instantaneous dispersion coefficients to use.

<table>
<thead>
<tr>
<th>Stability condition</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstable</td>
<td>0.14</td>
<td>0.92</td>
<td>0.53</td>
<td>0.73</td>
</tr>
<tr>
<td>Neutral</td>
<td>0.06</td>
<td>0.92</td>
<td>0.15</td>
<td>0.70</td>
</tr>
<tr>
<td>Very Stable</td>
<td>0.02</td>
<td>0.89</td>
<td>0.05</td>
<td>0.61</td>
</tr>
</tbody>
</table>

\[\sigma_y \approx 4x^b = 0.02 \left(1500 \right)^{0.83} = 13.42 \text{ m} \]

\[\sigma_z \approx cx^d = x^{3.23} = 4.329 \text{ m} \]

Then use the equation for ground level dose, absorbing ground:

\[D_j(x,y,0) = \frac{m_j}{\pi U \sigma_y \sigma_z} \exp \left\{ -\frac{1}{2} \left[\frac{(x - x_0)^2}{\sigma_y^2} + \left(\frac{H - y}{\sigma_z} \right)^2 \right] \right\} \]

\[D(x,0,0) = 36,750 \frac{\text{mg} \cdot \text{s}}{\text{m}^3} \gg 4500 \text{ mg} \cdot \text{s/m}^3 \]

This is hazardous.
(b) (continued) Repeat at various x locations. For example, predict the ground-level dose directly downwind at x = 2.5 km.

Solution:
Here we have:
- A very stable atmosphere
- Total mass of the chemical released = 10 kg
- Wind speed = 1.5 m/s
- Explosion is at ground level at time zero

Equations and tables for ground-level dose, absorbing ground:

\[
D_j(x, y, 0) = \frac{m_j}{\pi U \sigma_{yi} \sigma_{zi}} \exp \left\{ -\frac{1}{2} \left[\left(\frac{y}{\sigma_{yi}} \right)^2 + \left(\frac{H}{\sigma_{zi}} \right)^2 \right] \right\}, \quad \sigma_{xi} = \sigma_{yi} = ax^b, \quad \sigma_{zi} = cx^d.
\]

Table 3. Curve-Fit Constants for Instantaneous Dispersion Coefficients, Gaussian Puff Model
(adapted from Slade, 1968 as found in Hemmohn and Kabel, 1999)

<table>
<thead>
<tr>
<th>Stability condition</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstable</td>
<td>0.14</td>
<td>0.92</td>
<td>0.53</td>
<td>0.73</td>
</tr>
<tr>
<td>Neutral</td>
<td>0.06</td>
<td>0.92</td>
<td>0.15</td>
<td>0.70</td>
</tr>
<tr>
<td>Very Stable</td>
<td>0.02</td>
<td>0.89</td>
<td>0.05</td>
<td>0.61</td>
</tr>
</tbody>
</table>

\[y = 0 \quad H = 0 \]

\[G_{yi} = ax^b = 0.02(2500)^{0.89} = 21.444 \text{ m} \]
\[G_{zi} = cx^d = 0.05(2500)^{0.61} = 5.91171 \text{ m} \]

\[D_j = \frac{m_j}{\pi U G_{yi} G_{zi}} \]

\[D_j = \frac{10 \text{ kg}}{\pi (1.5 \frac{\text{ m}}{\text{s}})(21.444 \text{ m})(5.91171 \text{ m})} \]

\[D_j = 17,000 \frac{\text{ mg} \cdot \text{s}^{1/2}}{\text{ m}^2} \quad \text{at} \ x = 2.5 \text{ km} \]

\[\text{ANS} \]

Notes: 1) \(D_j \) still > \(D_j \text{ safe (4000)} \)
2) \(D_j \) smaller @ 2.5 km than at 1.5 km (36,500)

Now repeat at various x values to make a plot!
(c) Plot dose vs. x. How far downstream is this hazardous to people on the ground?

Solution:
Repeat for a range of x locations downstream. Note that for each x, you need to re-calculate the instantaneous dispersion coefficients. I used Excel and here is my plot:

Final Answers
- For **absorbing ground**, need to be @ $x \geq 6$ km to be “safe” @ centerline.
- For **reflecting ground**, need to be @ $x \geq 9.5$ km to be “safe” @ centerline.

We can also repeat for non-zero y values. Expect you will plot a hazardous area for homework.