M E 433 Professor John M. Cimbala Lecture 04

Today, we will:

- Discuss *relative humidity* (water vapor in air), and do some example problems
- Begin discussing the classification of air pollutants (CAPS, HAPS, NAAQS, etc.)

Relative Humidity (deals with the amount of water vapor in the air)

Example: Relative Humidity

Given: A hot summer day:

- $T = 95.0^{\circ} \text{F} (35.0^{\circ} \text{C})$
- *P* = 99.6 kPa
- RH = 90.0% (90% relative humidity)

To do: Calculate the mol fraction of water vapor in the air (in units of PPM).

Solution:

Example: Relative humidity

Given: The same hot summer day as in the previous example:

- $T = 95.0^{\circ} \text{F} (35.0^{\circ} \text{C})$
- *P* = 99.6 kPa
- RH = 90.0% (90% relative humidity)
- Now the temperature drops rapidly to 86.0° F (30.0° C)
- At the same time, the pressure drops to 98.5 kPa

To do: Calculate the new relative humidity of water vapor in the air and discuss.

Solution:

• Look up saturation pressure of water in thermo table at 30.0 °C. $P_{v, H2O} = 4.246$ kPa.

Example: Partial pressure of a volatile liquid

Given: A half-full can of liquid benzene sits in a storage can for several days at $T = 20^{\circ}$ C and at atmospheric pressure (P = 101.325 kPa = 760 mm Hg).

To do: Calculate the mass fraction of benzene in the air in the can as a percentage. **Solution**: