M E 433

Professor John M. Cimbala

Lecture 09

Today, we will:

- Continue to discuss **flux chambers**, and do an example problem
- Discuss EFs for tank-filling applications, and if time, do an example problem

Flux Chamber = an enclosure around a source of air pollutant with which we measure the source strength S_i of the pollutant.

Example: Methane from a Manure Tank

Given: Methane (CH₄) is emitted from a 2 m \times 1 m manure tank in a barn. A flux chamber is built on top of the tank to measure the emission rate. The following quantities are measured:

- $c_{j,a} = 0.0020 \text{ mg/m}^3$ (ambient mass concentration of CH₄ in the barn)
- $Q_a = 0.18 \text{ m}^3/\text{s}$ (bulk air flow rate into the flux chamber)

• $c_{j,ss} = 1.5 \text{ mg/m}^3$ (steady-state mass concentration of CH₄ leaving the flux chamber)

To do: Generate an emission factor, EF, for methane from a manure pile.

Solution:

