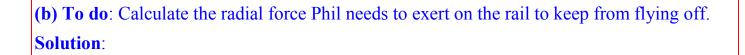
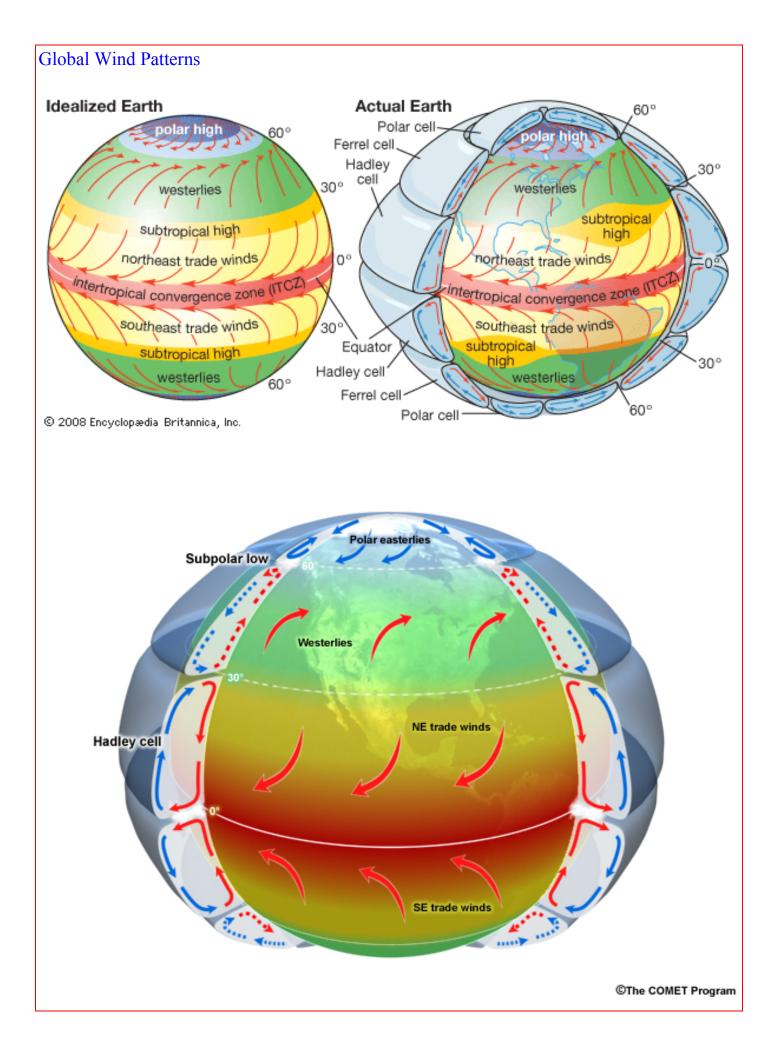
M E 433	Professor John M. Cimbala	Lecture 10
Today, we will:		1
_	EFs: Tank filling , and do some example probe basics of meteorology: Coriolis effect, glol	
We estimated that approx	ine-tank-filling problem from last lecture: kimately 0.057 kg of gasoline vapors are emi of gasoline at a gas station.	tted into the atmosphere


Bias in the media: Which sounds more alarming to the average person on the street?

- 1. You emit 0.057 kg of gasoline vapors into the atmosphere every time you fill up your car.
- 2. You emit 57 g of gasoline vapors into the atmosphere every time you fill up your car.
- 3. You emit 57,000 mg of gasoline vapors into the atmosphere every time you fill up your car.
- 4. You pollute the air by emitting 57,000 mg of toxic gasoline vapors into the atmosphere *every* time you fill up your car!

Example: Coriolis Force

Given: A merry-go-round of radius R = 15 m rotates at $\Omega = 10$ rpm. Phil (m = 90 kg) is riding the merry-go-round. He stands at the edge of the ride (r = R) and holds on to a rail to keep from flying off.


(a) To do: Calculate the magnitude of the Coriolis acceleration in g's experienced by Phil ["g" = a_c/g , where $g = 9.807 \text{ m/s}^2$]. Solution: The Coriolis force is $\vec{F_c} = m\vec{a_c} - 2m(\vec{\Omega} \times \vec{U})$].

Phil

(c) To do: If Phil throws a baseball horizontally at 67.11 mph (30 m/s), calculate the initial value of the magnitude of the Coriolis acceleration acting on the ball from Phil's perspective, in g's.

Solution: The Coriolis force is $\vec{F}_c = m\vec{a}_c - 2m(\vec{\Omega} \times \vec{U})$

