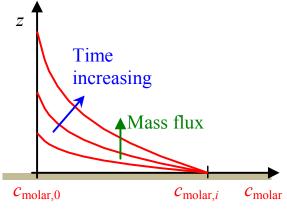

M	E 433	Professor John M. Cimbala	Lecture 13
Today, we will:			
•	D ₁ scus	s gradient diffusion and the Reynolds analogy	


Reynolds Analogy – Energy, momentum, and mass, all diffuse in similar fashion. Compare: Suddenly heated wall $[T = T_0 = 0^{\circ}\text{C} \text{ everywhere, then suddenly } T = T_i \text{ at the wall.}]$

Suddenly moving wall [$U = U_0 = 0$ m/s everywhere, then suddenly $U = U_i$ at the wall.]

Sudden removal of a membrane $[c_{\text{molar}} = c_{\text{molar},0} = 0 \text{ mol/m}^3 \text{ everywhere, then suddenly } c_{\text{molar}} = c_{\text{molar,i}}$ at the location of the membrane, and the membrane disappears suddenly).]

