
## Today, we will:

- Continue derivation of the **Gaussian plume model** equation and solution
- Modify the solution for a *buoyant* plume, and do some examples/applications
- Compare a ground that absorbs the pollutant vs. one that does *not* absorb the pollutant



From the previous lecture, we derived the differential equation for a non-buoyant Gaussian plume, assuming gradient diffusion, constant U, and constant diffusion coefficients:

$$\frac{\partial c_{j}}{\partial t} = -\frac{\partial}{\partial x} \left( U c_{j} \right) + \frac{\partial}{\partial x} \left( D_{x} \frac{\partial c_{j}}{\partial x} \right) + \frac{\partial}{\partial y} \left( D_{y} \frac{\partial c_{j}}{\partial y} \right) + \frac{\partial}{\partial z} \left( D_{z} \frac{\partial c_{j}}{\partial z} \right)$$

where our notation is  $D_x = D_{aj,x}$ ,  $D_y = D_{aj,y}$ , and  $D_z = D_{aj,z}$  for simplicity. Assumptions and Approximations:

Simplified equation for a steady Gaussian plume without buoyancy:

$$U\frac{\partial c_j}{\partial x} = D_y \frac{\partial^2 c_j}{\partial y^2} + D_z \frac{\partial^2 c_j}{\partial z^2}$$
 (1)

Now we apply boundary conditions (BCs) and solve (1) for  $c_i(x,y,z)$  in this plume.

Dispersion coefficients: Tables scanned from Cooper, C. D. and Alley, F. C. *Air Pollution Control: A Design Approach*, Edition 4, Waveland Press, Inc., Long Grove, IL, 2011, pp. 662-663.

Table 20.1 Stability Classifications\*

| Surface<br>Wind Speed <sup>a</sup><br>m/s | Incor               | Day<br>ning Solar Radi | Night<br>Cloudiness <sup>e</sup> |                  |                 |
|-------------------------------------------|---------------------|------------------------|----------------------------------|------------------|-----------------|
|                                           | Strong <sup>b</sup> | Moderate <sup>c</sup>  | Slight <sup>d</sup>              | Cloudy<br>(≥4/8) | Clear<br>(≤3/8) |
| <2                                        | Α                   | A–B <sup>f</sup>       | В                                | E                | F               |
| 2–3                                       | A–B                 | В.                     | С                                | Ε.               | F               |
| 3–5                                       | В                   | B-C                    | С                                | D                | Е               |
| 5–6                                       | С                   | C-D                    | D                                | D                | D               |
| >6                                        | C                   | D                      | D                                | D                | D               |

<sup>&</sup>lt;sup>a</sup> Surface wind speed is measured at 10 m above the ground.

\* A = Very unstable D = Neutral

B = Moderately unstable E = Slightly stable

C = Slightly unstable F = Stable

Regardless of wind speed, Class D should be assumed for overcast conditions, day or night.

**Table 20.2** Values of Curve-Fit Constants for Calculating Dispersion Coefficients as a Function of Downwind Distance and Atmospheric Stability

|           | а    | b     | x < 1 km |       |       | x > 1 km |       |       |
|-----------|------|-------|----------|-------|-------|----------|-------|-------|
| Stability |      |       | С        | ď     | f     | С        | d     | f     |
| Α         | 213  | 0.894 | 440.8    | 1.941 | 9.27  | 459.7    | 2.094 | -9.6  |
| В         | 156  | 0.894 | 106.6    | 1.149 | 3.3   | 108.2    | 1.098 | 2.0   |
| C         | 104  | 0.894 | 61.0     | 0.911 | 0     | 61.0     | 0.911 | 0     |
| D         | 68   | 0.894 | 33.2     | 0.725 | -1.7  | 44.5     | 0.516 | -13.0 |
| Ε         | 50.5 | 0.894 | 22.8     | 0.678 | -1.3  | 55.4     | 0.305 | -34.0 |
| F         | 34   | 0.894 | 14.35    | 0.740 | -0.35 | 62.6     | 0.180 | -48.6 |

Adapted from Martin, 1976.

<sup>&</sup>lt;sup>b</sup> Corresponds to clear summer day with sun higher than 60° above the horizon.

<sup>&</sup>lt;sup>c</sup> Corresponds to a summer day with a few broken clouds, or a clear day with sun 35-60° above the horizon.

<sup>&</sup>lt;sup>d</sup> Corresponds to a fall afternoon, or a cloudy summer day, or clear summer day with the sun 15–35°.

<sup>&</sup>lt;sup>e</sup> Cloudiness is defined as the fraction of sky covered by clouds.

f For A-B, B-C, or C-D conditions, average the values obtained for each.