

Ground effects (reflecting vs. absorbing ground):



## To do:

- (a) What stability class is this?
- (b) What value of constant *d* should we use at x = 2.0 km to determine the dispersion coefficient?

## Solution:

(a) Use Table 20.1 to determine the stability class (see next page for table).

## (b) Use Table 20.2 to determine constant d at x = 2.0 km (see table below).

| Stability | а    | b     | <i>x</i> < 1 km |       |       | <i>x</i> > 1 km |       |       |
|-----------|------|-------|-----------------|-------|-------|-----------------|-------|-------|
|           |      |       | С               | ď     | f     | С               | d     | f     |
| А         | 213  | 0.894 | 440.8           | 1.941 | 9.27  | 459.7           | 2.094 | -9.6  |
| В         | 156  | 0.894 | 106.6           | 1.149 | 3.3   | 108.2           | 1.098 | 2.0   |
| С         | 104  | 0.894 | 61.0            | 0.911 | 0     | 61.0            | 0.911 | 0     |
| D         | 68   | 0.894 | 33.2            | 0.725 | -1.7  | 44.5            | 0.516 | -13.0 |
| Е         | 50.5 | 0.894 | 22.8            | 0.678 | -1.3  | 55.4            | 0.305 | -34.0 |
| F         | 34   | 0.894 | 14.35           | 0.740 | -0.35 | 62.6            | 0.180 | -48.6 |

**Table 20.2** Values of Curve-Fit Constants for Calculating Dispersion

 Coefficients as a Function of Downwind Distance and Atmospheric Stability

Adapted from Martin, 1976.

**Dispersion coefficients:** Tables scanned from Cooper, C. D. and Alley, F. C. *Air Pollution Control: A Design Approach*, Edition 4, Waveland Press, Inc., Long Grove, IL, 2011, pp. 662-663.

| Surface                        | Incor               | Night<br>Cloudiness <sup>e</sup> |                     |                  |                 |  |
|--------------------------------|---------------------|----------------------------------|---------------------|------------------|-----------------|--|
| Wind Speed <sup>a</sup><br>m/s | Strong <sup>b</sup> | Moderate <sup>c</sup>            | Slight <sup>d</sup> | Cloudy<br>(≥4/8) | Clear<br>(≤3/8) |  |
| <2                             | A                   | A–B <sup>f</sup>                 | В                   | E                | F               |  |
| 2–3                            | A–B                 | B                                | С                   | Ε.               | F               |  |
| 3–5                            | В                   | B–C                              | С                   | D                | E               |  |
| 5-6                            | С                   | C-D                              | D                   | D                | D               |  |
| >6                             | С                   | D                                | D                   | D                | D               |  |

| Table 20. | 1 | Stability | Classifications* |
|-----------|---|-----------|------------------|
| ladie zu. |   | Stability | Classifications  |

<sup>a</sup> Surface wind speed is measured at 10 m above the ground.

<sup>b</sup> Corresponds to clear summer day with sun higher than 60° above the horizon.

<sup>c</sup> Corresponds to a summer day with a few broken clouds, or a clear day with sun 35-60° above the horizon.

<sup>d</sup> Corresponds to a fall afternoon, or a cloudy summer day, or clear summer day with the sun 15–35°.

<sup>e</sup> Cloudiness is defined as the fraction of sky covered by clouds.

<sup>f</sup> For A–B, B–C, or C–D conditions, average the values obtained for each.

- \* A = Very unstable D = Neutral
  - B = Moderately unstable E = Slightly stable

C = Slightly unstable F = Stable

Regardless of wind speed, Class D should be assumed for overcast conditions, day or night.

|           | а    | b     | <i>x</i> < 1 km |       |       | x > 1 km |       |       |
|-----------|------|-------|-----------------|-------|-------|----------|-------|-------|
| Stability |      |       | С               | ď     | f     | С        | d     | f     |
| А         | 213  | 0.894 | 440.8           | 1.941 | 9.27  | 459.7    | 2.094 | -9.6  |
| В         | 156  | 0.894 | 106.6           | 1.149 | 3.3   | 108.2    | 1.098 | 2.0   |
| C         | 104  | 0.894 | 61.0            | 0.911 | 0     | 61.0     | 0.911 | 0     |
| D         | 68   | 0.894 | 33.2            | 0.725 | -1.7  | 44.5     | 0.516 | -13.0 |
| Е         | 50.5 | 0.894 | 22.8            | 0.678 | -1.3  | 55.4     | 0.305 | -34.0 |
| F         | 34   | 0.894 | 14.35           | 0.740 | -0.35 | 62.6     | 0.180 | -48.6 |

**Table 20.2** Values of Curve-Fit Constants for Calculating Dispersion

 Coefficients as a Function of Downwind Distance and Atmospheric Stability

Adapted from Martin, 1976.



$$c_{j} = \frac{\dot{m}_{j,s}}{2\pi U \sigma_{y} \sigma_{z}} \left[ \exp\left\{-\frac{1}{2} \left[\left(\frac{y}{\sigma_{y}}\right)^{2} + \left(\frac{z-H}{\sigma_{z}}\right)^{2}\right]\right\} + \exp\left\{-\frac{1}{2} \left[\left(\frac{y}{\sigma_{y}}\right)^{2} + \left(\frac{z+H}{\sigma_{z}}\right)^{2}\right]\right\}\right]$$