M E 433	Professor John M. Cimbala	Lecture 17
Today, we will:	Troressor voim ivi. Cimoura	Localo 17
• Continue discussing	ng the Gaussian plume model – prediction of haz o do about temperature inversions and fumigating	
or w prume, where	o do do da comperación in entrente distribuir.	is prairies

Example: Gaussian plume

Given: A buoyant plume emitting air pollution, under the following conditions:

- Stack height = 80 m
- Buoyant plume rise = 40 m above stack exit
- Clear summer day with Sun high in the sky (early afternoon)
- The ground reflects (does not absorb) the air pollutant
- Average wind speed = 5.5 m/s
- The stack emits the air pollutant at a rate of 110 g/s

To do: Calculate the downwind location that has the maximum ground concentration.

Solution:

- First, use **Table 20.1** to determine the atmospheric stability class: At U = 5.5 m/s in the daytime with strong incoming solar radiation, this is **Class C**.
- Next, use **Table 20.2** to obtain the coefficients for calculation of dispersion coefficients: For Class C, we have a = 104, b = 0.894, c = 61.0, d = 0.911, and f = 0.
- At a given x location, calculate the dispersion coefficients: $\sigma_y = ax^b$, $\sigma_z = cx^d + f$, with x in units of km and σ_y and σ_z in units of m.
- The effective stack height is $H = h_s + \delta h = 80 + 40 = 120 \text{ m}$.
- Use the reflecting ground Gaussian plume equation at y = 0 (centerline) and z = 0 (ground) to calculate the maximum ground concentration at various values of x:

$$c_{j} = \frac{\dot{m}_{j,s}}{2\pi U \sigma_{y} \sigma_{z}} \left[\exp \left\{ -\frac{1}{2} \left[\left(\frac{y}{\sigma_{y}} \right)^{2} + \left(\frac{z - H}{\sigma_{z}} \right)^{2} \right] \right\} + \exp \left\{ -\frac{1}{2} \left[\left(\frac{y}{\sigma_{y}} \right)^{2} + \left(\frac{z + H}{\sigma_{z}} \right)^{2} \right] \right\} \right]$$

Table to be filled in during class: Note: U = 5.5 m/s, H = 120 m, and $\dot{m}_{j,s} = 110 \text{ g/s}$.

<i>x</i> (km)	$c_i (\mu g/m^3)$
0.4	
0.6	
0.8	
1.0	
1.2	
1.4	
1.6	
1.8	

<i>x</i> (km)	$c_j (\mu g/m^3)$
2.0	
2.2	
2.4	
2.6	
2.8	
3.0	
3.2	
3.4	