M E 433	Professor John M. Cimbala	Lecture 19
	Drafaggar John M. Cimhala	Lastura 10

Today, we will:

- Discuss the Gaussian puff diffusion model (sudden burst of air pollution from a point)
- Discuss particle vs. steam plumes and how to distinguish them (Slides)
- Start talking about **particles** (sizes, shapes, terminology, classifications, etc.) (Slides)

Example: Gaussian puff diffusion

Given: A ground-level tank containing 10 kg of hydrogen cyanide (HCN) ruptures at a chemical plant early in the morning. The atmosphere is very stable, and a gentle breeze is blowing at U = 1.5 m/s. The ground absorbs the HCN on contact. Workers downwind of the explosion are exposed to the HCN.

To do:

- (a) Estimate the dose of HCN that would constitute hazardous conditions for the workers.
- (b) Predict the dose directly downwind. How far downstream is this hazardous?

Solution:

(a)

(b)

Equation for ground level dose, absorbing ground:

$$D_{j}(x, y, 0) = \frac{m_{j}}{\pi U \sigma_{yi} \sigma_{zi}} \exp\left\{-\frac{1}{2}\left[\left(\frac{y}{\sigma_{yi}}\right)^{2} + \left(\frac{H}{\sigma_{zi}}\right)^{2}\right]\right\}$$

Table to be filled in during class:

<i>x</i> (km)	$D_i (\text{mg s/m}^3)$
1.0	
1.5	
2.0	
2.5	
3.0	
3.5	
4.0	
4.5	

<i>x</i> (km)	$D_i (\mathrm{mg s/m}^3)$
-	-
5.0	
5.5	
6.0	
6.5	
7.0	
7.5	
8.0	