M E 433

Professor John M. Cimbala

Lecture 24

Today, we will:

- Summarize our equations for particle motion
- Discuss terminal settling velocity and equations for its prediction in quiescent air
- Discuss aerodynamic equivalent diameter and how to apply it

Review of equations for particle motion so far:

Relative particle velocity =
$$|\vec{v}_r = \vec{v} - \vec{U}|$$
, where \vec{v} = particle velocity and \vec{U} = air velocity.
Drag force on a spherical particle = $|\vec{F}_{drag} = -\frac{1}{8}\rho \frac{C_D}{C}\pi D_p^2 \vec{v}_r |\vec{v}_r|$, where
 $C = 1 + \text{Kn} \left[2.514 + 0.80 \exp\left(-\frac{0.55}{\text{Kn}}\right) \right]$, $\text{Kn} = \frac{\lambda}{D_p}$, $\lambda = \frac{\mu}{0.499} \sqrt{\frac{\pi}{8\rho P}}$, $\text{Re} = \frac{\rho |\vec{v}_r| D_p}{\mu}$, and
 $C_D = \frac{24}{\text{Re}}$ for Re < 0.1, $C_D = \frac{24}{\text{Re}} (1 + 0.0916 \text{ Re})$ for $0.1 < \text{Re} < 5$.
Equation of motion for spherical particle: $m_p \frac{d\vec{v}}{dt} = \frac{\pi D_p^3}{6} (\rho_p - \rho) \vec{g} - \frac{1}{8} \rho \frac{C_D}{C} \pi D_p^2 \vec{v}_r |\vec{v}_r|$.
But for a spherical particle, we also know its mass, $m_p = \rho_p V_p = \rho_p \frac{\pi D_p^3}{6}$. Plugging this
mass into the equation of motion (after a little algebra), we get our final expression,
 $\frac{d\vec{v}}{dt} = \frac{\rho_p - \rho}{\rho_p} \vec{g} - \frac{3}{4} \frac{\rho}{\rho_p} \frac{C_D}{C} \frac{1}{D_p} \vec{v}_r |\vec{v}_r|$.

Simplest application – <u>Terminal settling velocity in quiescent air</u>

Terminal settling velocity:
$$V_t = \sqrt{\frac{4}{3} \frac{\rho_p - \rho}{\rho}} gD_p \frac{C}{C_D}$$
, but $C_D = C_D(\text{Re})$, where $\text{Re} = \frac{\rho V_t D_p}{\mu}$

Example: Terminal settling velocity as a function of particle diameter

Given: Air at STP with Cunningham correction factors from previous calculations. For

Stokes flow (Re less than about 0.1), $C_D = 24/\text{Re}$, and $V_t = \frac{\rho_p - \rho}{18} (D_p^2) g \frac{C}{\mu}$.

To do:

Calculate V_t for various values of particle diameter D_p . Also calculate Re to test our Stokes flow approximation. At STP conditions, $\rho = 1.184 \text{ kg/m}^3$, and $\mu = 1.849 \times 10^{-5} \text{ kg/(m s)}$. Use $g = 9.807 \text{ m/s}^2$ (gravitational constant), and $\rho_p = 1000 \text{ kg/m}^3$ (unit density spheres). [Give your answers to 3 significant digits, and be careful with units.]

Solution:

Table to be filled in during class:

$D_p(\mu m)$	С	V_t (m/s)	Re	D_p (µm)	С	V_t (m/s)	Re
0.001	222.7			0.6	1.282		
0.0025	89.43			1	1.169		
0.006	37.60			2.5	1.067		
0.01	22.79			6	1.028		
0.025	9.489			10	1.017		
0.06	4.355			25	1.007		
0.1	2.921			60	1.003		
0.25	1.702			100	1.0017		