

 $c_i(\text{out})$

 $E(D_p)$ (in %) for each particle diameter D_p in the table below.

Solution: Table to be filled in during class:

D_p (µm)	$v_r (\mathrm{m/s})$	$E(D_p)$ (%)			
1	0.000506747		D_p (µm)	v_r (m/s)	$E(D_p)$ (%)
1.5	0.001085343		10	0.043982967	
2	0.001880751		20	0.171476946	
2.5	0.002892936		25	0.262745185	
3	0.004121854		30	0.368588815	
4	0.007229597		40	0.609606668	
5	0.011203123		50	0.867242208	
7	0.021741295		70	1.388132409	
Equations: Well-mixed: $E(D_p) = 1 - \frac{c_j}{c_j(in)} = 1 - \exp\left(-\frac{x}{L_c}\right)$, where $L_c = W \frac{U_{\theta}}{v_r}$, $x = r_m C$					

Example: Lapple Cyclone

Given: A standard reverse flow Lapple cyclone is used to clean up a dusty air flow exhausted by a sanding machine in a wood shop. The main body diameter of the cyclone is $D_2 = 45.0 \text{ cm} (0.450 \text{ m}).$

- •
- particle density $\rho_p = 730 \text{ kg/m}^3$ bulk volume flow rate of air $Q = 0.55 \text{ m}^3/\text{s}$
- Air is at STP: $\rho = 1.184 \text{ kg/m}^3$, $\mu = 1.849 \times 10^{-5} \text{ kg/(m s)}$. •

Calculate the grade efficiency $E(D_p)$ for 10-µm particles. Give your answer as a To do: percentage to 3 significant digits.

Solution: Some equations:
$$D_{p,\text{cut}} = \sqrt{\frac{3\mu D_2^3}{128\pi Q(\rho_p - \rho)}}, \quad E(D_p) = \frac{1}{1 + \left(\frac{D_p}{D_{p,\text{cut}}}\right)^{-2}}.$$