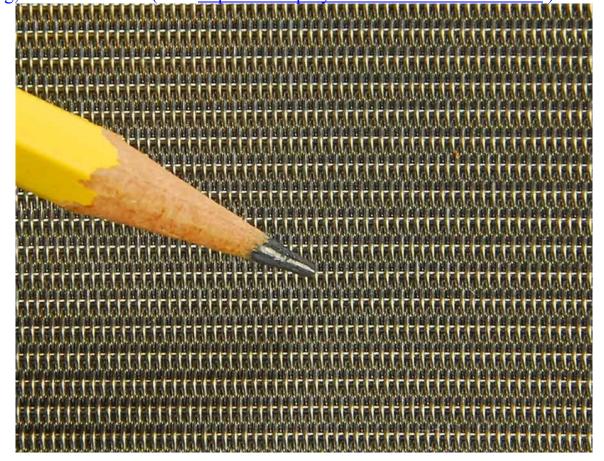

M E 433		Professor John M. Cimbala
an I	•11	

Lecture 36


	Tod	lav.	we	wil	l:
--	-----	------	----	-----	----

- Discuss **air filters**, and how to classify them and analyze their efficiency Discuss **dust cakes** and their effect on air filters

Example of a woven filter, where the woven threads are mostly just for support (from http://img.diytrade.com/cdimg/1716948/24752681/0/1329961910/Woven filter Belt.jpg):

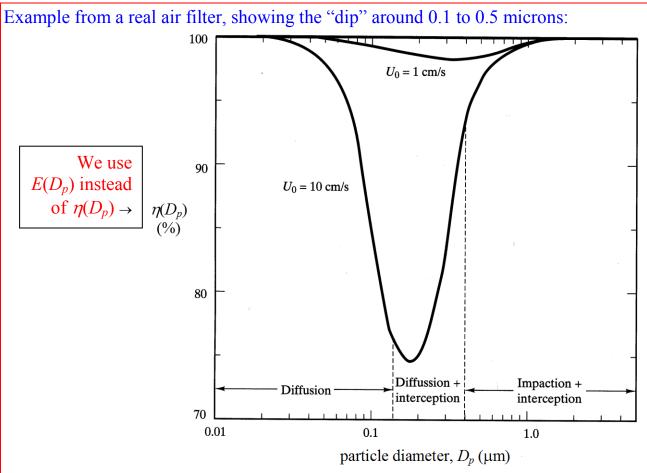
Example of a woven filter, where the woven "threads" are very tight and do the actual filtering; this one is *metal* (from http://www.ap-by.com/?Product105/xxw.html):

Example of a "felt" type filter (from http://www.lambdaphoto.co.uk/):

Example: Performance of an Air Filter

Given: An air filter is used to clean air. Here are some properties:

- $D_f = 20$ microns = 20E-06 m (diameter of the hairy fibers inside the filter)
- $U_0 = 0.200$ m/s (air speed upstream and downstream of the filter)
- $\varepsilon = 0.76$ (porosity of the air filter, i.e., fraction of open area)
- $D_p = 1$ micron = 1.0E-06 m (diameter of the air pollution particles we are targeting)
- $\rho_p = 1000 \text{ kg/m}^3$ (air pollution particles are treated as unit density spheres)
- L = 5.0 mm = 0.0050 m (total length (thickness) of the filter)
- Air at STP: $\rho = 1.184 \text{ kg/m}^3$, $\mu = 1.849 \times 10^{-5} \text{ kg/(m s)}$


Calculate the collection grade efficiency of the filter for these particles. You're your To do: answer as a percentage to three significant digits.

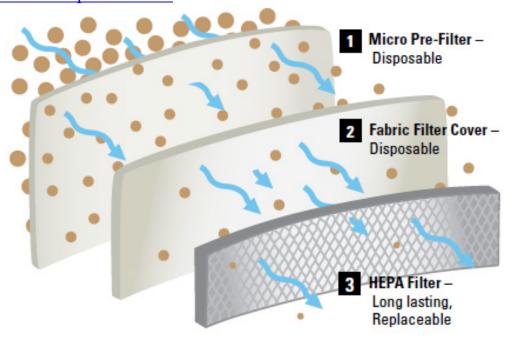
Solution: Some equations:
$$Stk = \frac{\left(\rho_p - \rho\right)D_p^2\left(U_0/\varepsilon\right)}{18\mu D_f}, E_f\left(D_p\right) = \left(\frac{Stk}{Stk + 0.425}\right)$$

$$E_f(D_p) = \left(\frac{Stk}{Stk + 0.425}\right)^2$$

$$L_c = \frac{\pi}{4} \frac{\varepsilon}{1 - \varepsilon} \frac{D_f}{E_f(D_p)},$$

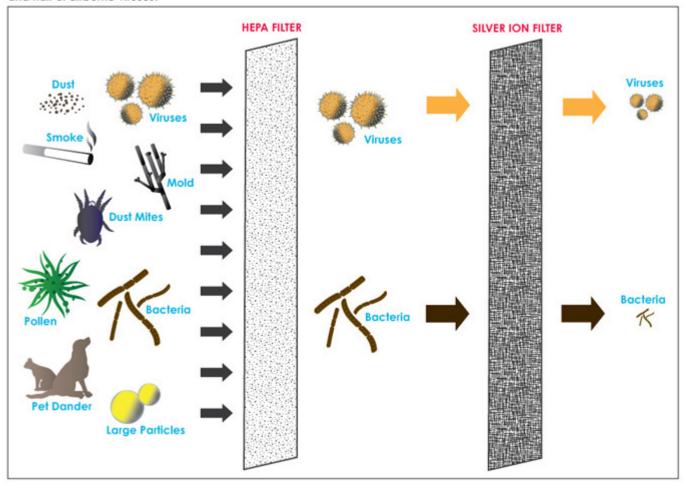
$$E(D_p) = 1 - \exp\left(-\frac{L}{L_c}\right)$$

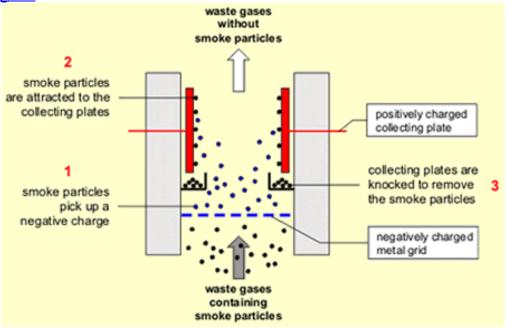
Filter grade efficiency for two face velocities; filter thickness H = 1.0 mm, solids fraction $f_f = 0.05$ (porosity $\varepsilon = 0.95$), single fiber diameter $D_f = 2$ µm (adapted from Hinds, 1982).


United States NIOSH standards define the following categories of particulate filters: http://en.wikipedia.org/wiki/Respirator-cite_note-fact_sheet-5 (from http://en.wikipedia.org/wiki/Respirator):

Oil resistance	Rating	Description	
Not oil resistant	N95	Filters at least 95% of airborne particles	
	N99	Filters at least 99% of airborne particles	
	N100	Filters at least 99.97% of airborne particles	
	R95	Filters at least 95% of airborne particles	
Oil Resistant	R99	Filters at least 99% of airborne particles	
I	R100	Filters at least 99.97% of airborne particles	
	P95	Filters at least 95% of airborne particles	
Oil Proof	P99	Filters at least 99% of airborne particles	
	P100	Filters at least 99.97% of airborne particles	

Example of a pleated filter: (from http://www.onlinevacshop.com/Fantom-HEPA-Filter.php)


Some images from filter manufacturers: From http://certifiedhepafilter.com/:


From http://www.cleancraft.com/Alen_A350_Replacement_Silver_HEPA_Air_Filter_p/apa350f-silv.htm :

HEPA with Silver Ion Filtration

The HEPA filter eliminates over 99% of airborne allergens while the addition of the Silver Ion filter eliminates 98% of bacteria and half of airborne viruses.

Ionizer. From http://air-purifier-reviewsite.com/blog/types-of-air-purifier-technology-that-is-best-for-allergies/:

