M E 433	Professor John M. Cimbala	Lecture 39

oday, we will:

- Continue discussing aerosol particle statistics: arithmetic mean diameter, geometric mean diameter, geometric standard deviation, mass distribution.
- Show how to (carefully!) plot cumulative distribution functions on log-probability paper. •

Example: Log-probability plots Given: A sample (in terms of grouped data) is shown below.

<i>j</i> = class (bin number)	D _{p,min,j} (lower limit)	D _{p,max,j} (upper limit)	D _{pj} (middle value)	∆D _{pj} = class width	<i>n_j</i> = count per class	probability in this class = n _j /n _t	F(D _{p,max,j}) = cumulative dist. func.
1	0.4	0.8	0.6	0.4	26	0.0052	0.52
2	0.8	1.2	1	0.4	67	0.0134	1.86
3	1.2	2	1.6	0.8	255	0.051	6.96
4	2	3	2.5	1	447	0.0894	15.9
5	3	4	3.5	1	477	0.0954	25.44
6	4	5	4.5	1	456	0.0912	34.56
7	5	6	5.5	1	411	0.0822	42.78
8	6	8	7	2	674	0.1348	56.26
9	8	10	9	2	503	0.1006	66.32
10	10	12	11	2	372	0.0744	73.76
11	12	16.3	14.15	4.3	517	0.1034	84.1
12	16.3	20	18.15	3.7	255	0.051	89.2
13	20	30	25	10	325	0.065	95.7
14	30	50	40	20	215	0.043	100

Calculate the geometric standard deviation σ_g (to 3 significant digits). To do:

Solution:

Mass Distribution

Additional analysis of the sample particle data (class handout; also see Excel spreadsheet):

				_	T			
	j = class (bin number)	D _{p,min,j} (lower limit)	D _{p,max,j} (upper limit)	D _{p,j} (middle value)	$m_{j,in} =$ $n_j \rho_p \pi D_{p,j}^{3}/6 =$ mass in class <i>j</i> (mg)	m _{j,in} / Δ(D _{p,j}) (mass in class j divided by class width)	g(D _{p,j}) _{in} = m _j /m _t (mass fraction of original aerosol)	G(D _p) _{in} = (M _j /m _t) _{in} = cumulative mass distribution (%)
	1	1	4	2.5	8.50848E-07	2.83616E-07	0.000373985	0.037398476
	2	4	6	5	1.0472E-05	5.23599E-06	0.004602889	0.497687408
	3	6	8	7	2.89147E-05	1.44573E-05	0.012709268	1.768614192
	4	8	9	8.5	2.41166E-05	2.41166E-05	0.01060031	2.828645219
	5	9	10	9.5	3.00777E-05	3.00777E-05	0.013220447	4.150689966
	6	10	14	12	0.000168289	4.20722E-05	0.073970273	11.54771722
	7	14	16	15	0.000107796	5.38979E-05	0.047380992	16.28581641
	8	16	20	18	0.000241237	6.03092E-05	0.106034	26.88921637
	9	20	35	27.5	0.00098003	6.53353E-05	0.430765712	69.96578759
-	10	35	50	42.5	0.000683305	4.55536E-05	0.300342124	100
	11	50	100	75	0	0	0	100

Mass of particles in class *j*: **Cumulative mass** m_j distribution function: $G(D_p)$ [sometimes written as M_j/m_t] Mass fraction of Mass of particles in particles in class *j*: class *j* divided by class $g(D_{p,j}) = m_j/m_t$ width: $m_j/(\Delta D_{p,j})$ When plot this on logprobability paper, remember to use $D_{p,\max,j}$, not $D_{p,j}$ since the cumulative distribution function includes the entire *bin* from min to max.

