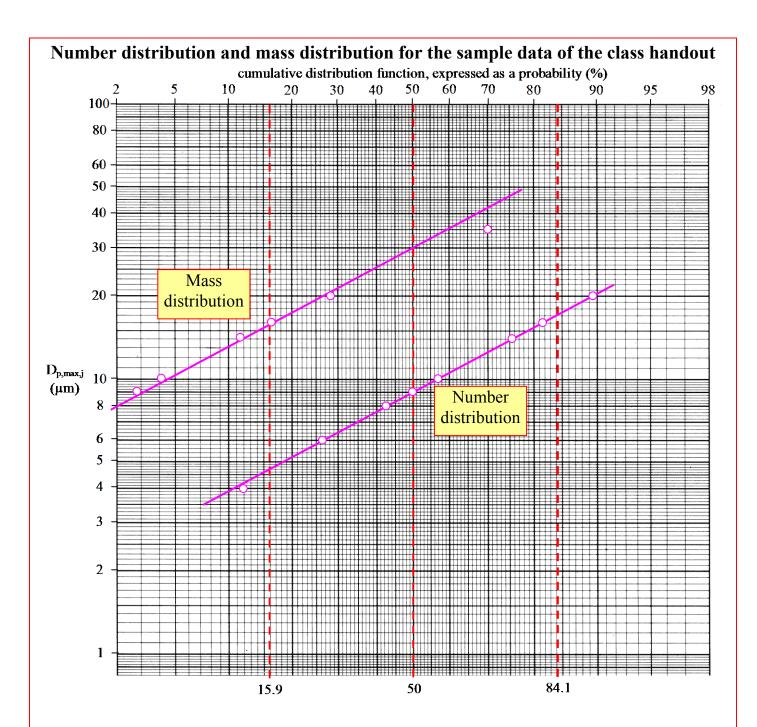

M E 433Professor John M. CimbalaLecture 40Today, we will:Continue discussing aerosol particle statistics: mass distribution, and cumulative mass distribution.


- Finish discussing aerosol particle statistics: Predict how the particle statistics change after passing through an APCS.
- News article presentation by Isaac Moore

Mass Distribution

Additional analysis of the sample particle data (class handout; also see Excel spreadsheet):

j = class (bin number)	D _{p,min,j} (lower limit)		(middle	1,	(mass in class	(mass fraction of original aerosol)	cumulative
1	1	4	2.5	8.50848E-07	2.83616E-07	0.000373985	0.037398476
2	4	6	5	1.0472E-05	5.23599E-06	0.004602889	0.497687408
3	6	8	7	2.89147E-05	1.44573E-05	0.012709268	1.768614192
4	8	9	8.5	2.41166E-05	2.41166E-05	0.01060031	2.828645219
5	9	10	9.5	3.00777E-05	3.00777E-05	0.013220447	4.150689966
6	10	14	12	0.000168289	4.20722E-05	0.073970273	11.54771722
7	14	16	15	0.000107796	5.38979E-05	0.047380992	16.28581641
8	16	20	18	0.000241237	6.03092E-05	0.106034	26.88921637
9	20	35	27.5	0.00098003	6.53353E-05	0.430765712	69.96578759
10	35	50	42.5	0.000683305	4.55536E-05	0.300342124	100
11	50	100	75	0	0	0	100

Example: Converting from mass distribution to number distribution

Given: Mingshou uses a cascade impactor to sample the air quality in Beijing. After carefully weighing all the trays before and after the sample, he plots the cumulative mass distribution on log-probability paper. The data fit fairly nicely into a straight line. From the plot, he determines that $D_{p,15.9}$ (mass) = 2.9 microns, and $D_{p,50}$ (mass) = 5.8 microns.

To do: For the air quality study that Mingshou is performing, he needs to know the median particle diameter based on *number*, not mass. From the given data, estimate $D_{p,50}$ (number). Give your answer in microns to two significant digits.

Solution: Some equations: $D_{p,gm}(number) = D_{p,50}(number)$, $D_{p,gm}(mass) = D_{p,50}(mass)$,

 $\sigma_{g} = \frac{D_{p,50}(\text{number})}{D_{p,15.9}(\text{number})} = \frac{D_{p,50}(\text{mass})}{D_{p,15.9}(\text{mass})}, \quad \ln(D_{p,50} \text{ (mass)}) = \ln(D_{p,50} \text{ (number)}) + 3\left[\ln(\sigma_{g})\right]^{2}$