M E 433 Professor John M. Cimbala	Lecture 02
Today, we will:	
 Continue introductory material – fundamentals and review, gas mixtur Do some example problems 	es
Consider a tank filled with air plus some gaseous contaminants (pollutants):	Tank
From previous lecture, we had: $m_t = \sum_{j=1}^J m_j = \sum_j m_j = \sum_j m_j$	pollutants
(total mass is the sum of the mass of each species)	T, P, V
	otal mass, mols
(total number of mols is the sum of the number of mols of $m_j = ma$	ber of species s of species <i>j</i> ls of species <i>j</i>
$M_{AJJ} \text{ for the in of species } \rightarrow \left\{f_{j} = \frac{m_{j}}{m_{t}}\right\} \{f_{j}\} = \{i\}$	
Mol fraction of species $y_j = \frac{n_j}{n_t}$ $\{n_j\} = 1$	
But typ. units of PPM p or PPB	who per million
e.g. y = 4,1 PPM - 4,1 moly of CO por million	moly of get mixture
$y_{co} = 4.1 \text{ ppm}$	
= 4100 PPB	
$= 4.1 \times 10^{-6} = 0.0000041$ e We this in a	

Ideal gas law - For the bulk mixture
$$PH = n_{t}R_{u}T$$

Partial frazilite, P_{j} , of species $j = pressure that species j would
exert if it were the only gas in the continuer at
Jame Volume H i, T
DAUTON'S LAWS OP ADDITIVE PRESSURES $P = \sum_{j=1}^{T} P_{j}R_{u}$
is ideal gas law applies to partial preview:
 $P_{i}H = n_{j}R_{u}T$
Aldo, $M_{j} = moleanler weight of species $j = M_{j} = \frac{m_{t}}{n_{t}}$
 $M_{t} = \frac{m_{t}}{n_{t}} = \frac{\sum_{i=1}^{m_{t}}(n_{i})}{n_{o}} = \sum_{i=1}^{m_{t}}(n_{i})M_{i}$
 $M_{t} = \frac{\sum_{i=1}^{m_{t}}(n_{i})}{n_{o}} = \sum_{i=1}^{m_{t}}(n_{i})M_{i}$
 $M_{t} = \sum_{i=1}^{m_{t}}(n_{i})M_{i}$
 $M_{t} = \sum_{i=1}^{m_{t}}(n_{i})M_{i}$
 $M_{t} = \sum_{i=1}^{m_{t}}(n_{i})M_{i}$$$

Example: Stoichiometric mass balance

Given: The following chemical equation with unknown stoichiometric coefficient *a*:

$$Al(OH)_3 + aH \rightarrow Al + 3H_2O$$

To do: Calculate coefficient *a*. **Solution**:

H:
$$3 + a = 3x^{2-6}$$

 $a=3$
 $a=3$

Example: Partial pressure and mol fraction (Qol)

Given: A tank contains air and a small amount of gaseous pollutant, species *j*. The mol fraction of species *j* is 2.0 PPM. The pressure and temperature in the tank are 100 kPa and 300 K, respectively.

To do: Calculate the partial pressure of species j, i.e., calculate P_j in units of kPa.

Solution:

Hint: These equations may be useful:
$$y_j = \frac{n_j}{n_t}$$
, $PV = n_t R_u T$, $P_j V = n_j R_u T$.
Take ratio of these two:

$$\frac{P_{j}}{P} = \frac{n_{j}}{n_{L}} \frac{R_{u}T}{A} = y_{j} - \frac{P_{j}}{P_{j}} = y_{j}P_{j}$$

$$\frac{P_{j}}{P_{j}} = (2.0 \times 10^{6})(100 \text{ kPs}) = 0.00020 \text{ kPs}$$

$$0.00020 \text{ kPs}$$

1 Q01

Example: Ideal gas mixture

A simple natural gas mixture is composed of three chemicals: Given:

- Methane (CH₄), 90% mol fraction $y_1 = 0.9$ •
- Ethane (C₂H₆), 8% mol fraction $\rightarrow y_{v} = 0.08$ •
- Propane (C_3H_8) , 2% mol fraction

 (C_3H_8) , 2% mol fraction $-y_j = 0.82$ Calculate the bulk molecular weight of the natural gas. To do: **Solution**:

First, I used the on-line periodic table to find the molecular weights of each component molecule:

- Carbon, C, M = 12.0107 g/mol Hydrogen, H, M = 1.00794 g/mol

$$Methane \rightarrow M = 12.0107 + 4(1.00794) = 16.04246 \ 9/mol$$

$$Ethane \rightarrow M = 2(1) + 6(1) = 30.06904 ...$$

$$Pripmu \rightarrow M = 3(1) + 8(1) = 44.09562 ...$$

$$M_{t} = \leq (4, M_{t})$$

$$M_{t} = (0.90)(16.04246) + (0.08)(30.06904) + (0.02)(44.09562)$$

$$= 17.72565 \ 9/mol$$

$$M_{t} = 17.73 \ 9/mol$$

"Manipulations

Example: Griver:
$$f_{ij} = m_{kll} f_{kl} + h_{kl} + \frac{m_{ij}}{m_{k}}$$

The lass where f_{ij} in torny of mole that is indecider where M_{ij}
 $f_{ij} = \frac{m_{ij}}{m_{k}} = \frac{n_{ij}M_{ij}}{Z(n_{ij}M_{ij})} = \frac{m_{ij}}{Z(n_{ij}M_{ij})} = \frac{Y_{ij}M_{ij}}{Z(n_{k})M_{ij}} = \frac{Y_{ij}M_{ij}}{Z(N_{ij})M_{ij}}$
 $f_{ij} = y_{ij}\frac{M_{ij}}{M_{k}}$
 $OR, \quad f_{j} = \frac{m_{ij}}{m_{k}} = \frac{N_{ij}M_{ij}}{N_{k}M_{k}} = \frac{Y_{ij}}{M_{k}}$
 $PARTIAL VOLUME$ $Y_{ij} = Volume that spece is usual occupy
if it were the only gap in the container
at same $P(i, T)$ as organ!
Atmagnet's law of Additive Volumes - $Y = \sum_{ij=1}^{N} Y_{ij}$
 $T del gav og Apple to pathod vilume $P(Y_{ij} = n_{ij}R_{ij}T)$$$

Relationships between
$$y_{j}$$
 (mol fraction)
 P_{j} (partial produce)
 H_{j} (partial value)
Ideal get for bulk maxture $\rightarrow PH = n_{t} R_{t}T$
 \therefore $Species j \rightarrow P_{j}H = n_{j} R_{t}T$
 \therefore $Species j \rightarrow P_{tj} = n_{j} R_{t}T$
 \therefore $P_{tj} = n_{j} R_{t}T/T$
 $P_{j} = \frac{n_{j} R_{t}T/T}{n_{t} R_{t}T/T} = \frac{n_{j}}{n_{t}} = y_{j}$
 $\frac{H_{j}}{H} = \frac{n_{j} R_{t}T/T}{n_{t} R_{t}T/R} = \frac{n_{j}}{n_{t}} = y_{j}$
 $\frac{H_{j}}{H} = \frac{n_{j} R_{t}T/R}{n_{t} R_{t}T/R} = \frac{n_{j}}{n_{t}} = \frac{y_{j}}{H}$
 $\frac{H_{j}}{H} = \frac{n_{j}}{n_{t}} R_{t}T/R = \frac{n_{j}}{n_{t}} = \frac{y_{j}}{H}$
(VALS for ideal gay mixture)
 T_{t} most air pollutions applications, $A_{t}r$ is dominant specify
 $M_{t} \approx M_{air}$ with approximation for many problems