Today, we will:

Discuss gradient diffusion and the Reynolds analogy

Goal- To discuss & predict plume dispersion in the atmosphere

Grahient Diffiquian Let a = some concentration of a property A

Let a= A (A per unit volume) (a can be any property)

Simple 1-0 diffyin

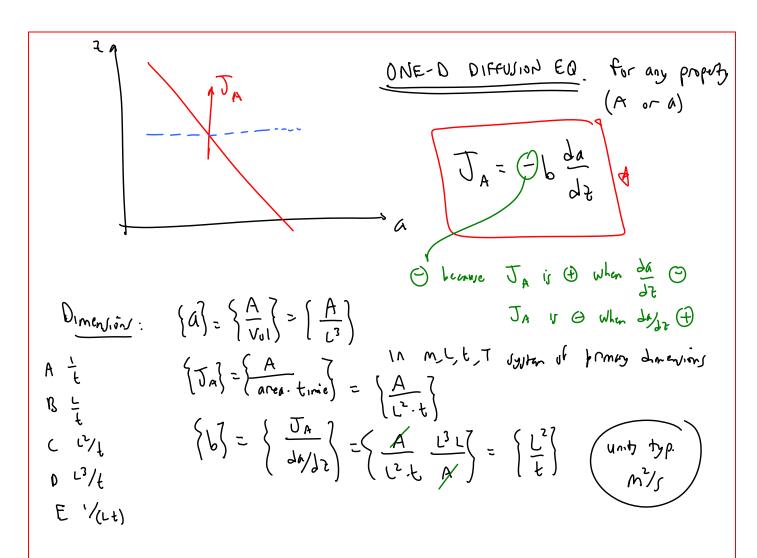
Let a=a(2) - Gradient (slupe) of a west, to

a is lage

Ether way, lamor or turbulant, a will diffuse from high concentration of a to low

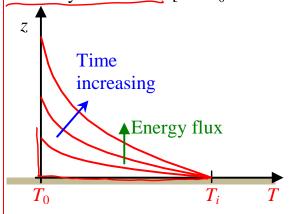
1-D GRADIENT DIFFUSION

of the slope got smaller (a tries do get uniform)


Mathematically

let In = net amount of property A transported per

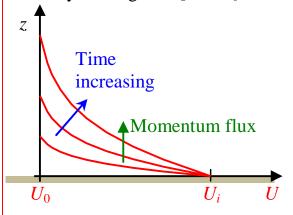
unit time per unit area in the 2-direction


b = a diffusion coefficient - b determines how let

rapidly A diffues

EXAMPLES OF 1	-O DIFFUSION EQ	A = -6 da/12	
(A) (a) Property W/ a gradient	(JA) amt of A per unit area, per unit three	(b) Diffujion coeff	1-0 gradient Inthuisin eq.
ENERGY A= energy=mCpT $A = \frac{A}{V} = \frac{m}{V} CpT$ CpT CpT We have a gradient of $T When \rho, Cp = \omega N I.$	= heat flux = rate of heat (energy) transfer per unit area { energy arexitarie}	K [Some books] (Thornal diffusivity) $K = pCpk$ $k = thernal$ $K = \frac{2}{t}$ (m2)	G=-Kd(PCpT) G=-Kd(PCpT) MEAT DIFFUSION EU (one -1)
MOMENTUM A= momentum = mU a= mU We have a gradient of U (velocity) when p= can	for Jehning T	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2= -) 3(pl) -2= -) 3(pl) -2= -) 3(pl) -2= -) 3(pl)
MASS - moly of species Let $A = n_j = \# mol$ $a = \frac{n_j}{\#} = C_{molar}$ Molar conc. of species Of Ficky Ly Since $C_j = C_{molar,j}$	= molar flux = rate of transfer mols of j per un mols 7 area.thme version multiply by Mj -	Daj = binary diff of wefficient be	FICK'S LAW

Reynolds Analogy – Energy, momentum, and mass, all diffuse in similar fashion. Compare: Suddenly heated wall $[T = T_0 = 0^{\circ}C$ everywhere, then suddenly $T = T_i$ at the wall.]

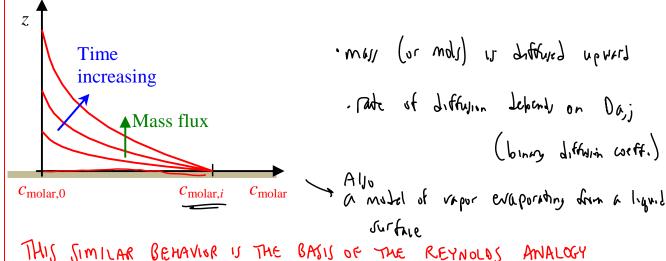


· Energy is diffused upward

· rate of diffusion depend on K

(thermal diffusivity)

Suddenly moving wall [$U = U_0 = 0$ m/s everywhere, then suddenly $U = U_i$ at the wall.]



· Momentum is diffused apostod

· Take of diffusion depends on D

(Knomatic Viscosity)

Sudden removal of a membrane [$c_{\text{molar}} = c_{\text{molar,0}} = 0 \text{ mol/m}^3$ everywhere, then suddenly $c_{\text{molar}} = c_{\text{molar,i}}$ at the location of the membrane, and the membrane disappears suddenly).]

