Professor John M. Cimbala M E 433 Lecture 15 Today, we will: Continue derivation of the Gaussian plume model – equation and solution Modify the solution for a *buoyant* plume, and do some examples/applications Compare a ground that absorbs the pollutant vs. one that does *not* absorb the pollutant (Jone X Top view U۲Ċ, ► x $\dot{m}_{i,s}$ Singularity @ Side view On certria UC h_s obvection

From the previous lecture, we derived the differential equation for a non-buoyant Gaussian plume, assuming gradient diffusion, constant U, and constant diffusion coefficients:

JiFryin in X

22

In X

where our notation is $D_x = D_{aj,x}$, $D_y = D_{aj,y}$, and $D_z = D_{aj,z}$ for simplicity. Assumptions and Approximations:

Eq.

 $U\frac{\partial c_{j}}{\partial x} = D_{y}\frac{\partial^{2}c_{j}}{\partial y^{2}} + D_{z}\frac{\partial^{2}c_{j}}{\partial z^{2}}$

(1)

Now we apply boundary conditions (BCs) and solve (1) for $c_i(x,y,z)$ in this plume.

B(j (new r))
(1)
$$(\overline{y} \rightarrow 0)$$
 ny $y \rightarrow 00$ (for hold, at $v \ den$.)
(2) $(\overline{y} \rightarrow 0)$ ny $\overline{y} \rightarrow \infty$
(3) Jymnity don't $y \ any \ ey = 0$
(4) ... $\overline{z} \rightarrow 0$
(5) $\rightarrow ned + Bc \ln x$.
Nett: $e \ x=0$, $c_{\overline{y}} \rightarrow \infty$
(4) $v \ v \neq point \ rsume$
(5) $\rightarrow ned + Bc \ln x$.
Nett: $e \ x=0$, $c_{\overline{y}} \rightarrow \infty$
(5) $-ned + Bc \ln x$.
Nett: $e \ x=0$, $c_{\overline{y}} \rightarrow \infty$
(6) $v \ v \neq point \ rsume$
(7) $v \ v \neq point \ rsume$
(8) $v \ v \neq point \ rsume$
(9) $v \ v \neq point \ rsume$
(10) $v \ v \neq point \ rsume$
(11) $v \ rsume$
(12) $v \ rsume$
No gravnal
(13) $v \ rsume$
(14) $v \ rsume$
(15) $v \ rsume$
(15) $v \ rsume$
(16) $v \ rsume$
(17) $v \ rsume$
(18) $v \ rsume$
(19) $v \ rsume$
(19) $v \ rsume$
(19) $v \ rsume$
(10) $v \ rsume$
(11) $v \ rsume$
(12) $v \ rsume$
(13) $v \ rsume$
(14) $v \ rsume$
(15) $v \ rsume$
(15) $v \ rsume$
(16) $v \ rsume$
(16) $v \ rsume$
(17) $v \ rsume$
(17) $v \ rsume$
(18) $v \ rsume$
(19) $v \ rsume$
(19) $v \ rsume$
(19) $v \ rsume$
(10) $v \ rsume$
(10) $v \ rsume$
(10) $v \ rsume$
(11) $v \ rsume$
(12) $v \ rsume$
(13) $v \ rsume$
(14) $v \ rsume$
(15) $v \ rsume$
(15) $v \ rsume$
(15) $v \ rsume$
(16) $v \ rsume$
(17) $v \ rsume$
(17) $v \ rsume$
(17) $v \ rsume$
(18) $v \ rsume$
(19) $v \ rsume$
(10) $v \ rsume$
(11) $v \ rsume$
(11) $v \ rsume$
(12) $v \ rsume$
(13) $v \ rsume$
(14) $v \ rsume$
(15) $v \ rsume$
(15) $v \ rsume$
(16) $v \ rsume$
(17) $v \ rsume$
(17) $v \ rsume$
(18) $v \ rsume$
(19) $v \ rsume$
(19)

Neck equil for
$$G_y$$
 i G_z - 1 Get theye empirically
Defaults on . Type of terrain (rural, urban foret)
. Stability of Atmosphere (moteoralisty, lapse rate)
. X (dividence from 60026)
Three are many empirical easir for G_y is G_b - can be complicated
We will use they mode?
 $G_y = a_X b$
 $G_b = c_X + f$
 $G_b = c_X + f$
 G_c i G_z are in m
 G_c i G_c i G_c e $X = 2.0$ km
 $U = 4.8$ m/s
 G_c on overlyt morning
 G_c i G_c i G_c e $X = 2.0$ km
 $U = 4.8$ m/s
 G_c are G_c in G_c in