

Example: Gaussian plume

Given: A buoyant plume emitting air pollution, under the following conditions:

• Stack height = $80 \text{ m} = h_{J}$

- Clear summer day with Sun high in the sky (early afternoon)
- The ground <u>reflects</u> (does not absorb) the air pollutant

Buoyant plume rise = 40 m above stack exit $= \int_{\mathbf{k}}$

- Average wind speed = $5.5 \text{ m/s} = \bigcirc$
- The stack emits the air pollutant at a rate of 110 g/s = $\dot{h}_{i,s}$

To do: Calculate the downwind location that has the maximum ground concentration.

Solution:

•

- First, use **Table 20.1** to determine the atmospheric stability class: At U = 5.5 m/s in the daytime with strong incoming solar radiation, this is **Class C**.
- Next, use **Table 20.2** to obtain the coefficients for calculation of dispersion coefficients: For Class C, we have a = 104, b = 0.894, c = 61.0, d = 0.911, and f = 0.
- <u>At a given *x* location, calculate the dispersion coefficients:</u>
 - $\sigma_y = ax^b$, $\sigma_z = cx^d + f$, with x in units of km and σ_y and σ_z in units of m.
- The effective stack height is $H = h_s + \delta h = 80 + 40 = 120$ m.
- Use the reflecting ground Gaussian plume equation at y = 0 (centerline) and z = 0 (ground) to calculate the maximum ground concentration at various values of *x*:

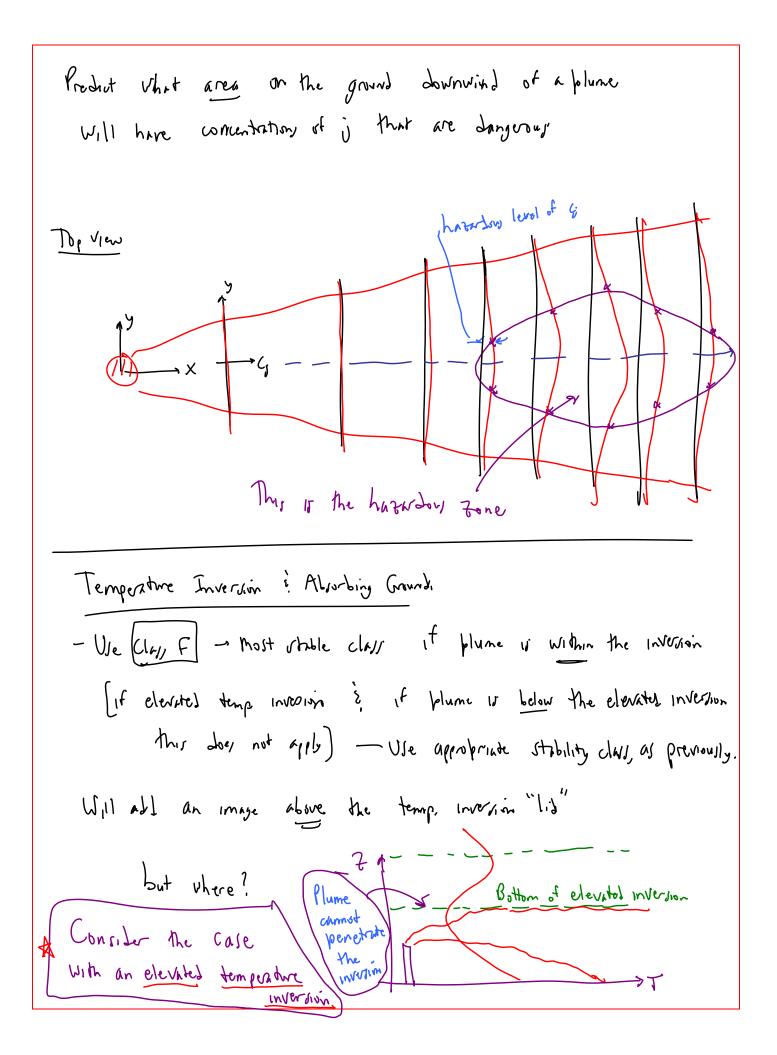

$$c_{j} = \frac{\dot{m}_{j,s}}{2\pi U \sigma_{y} \sigma_{z}} \left[\exp\left\{-\frac{1}{2} \left[\left(\frac{y}{\sigma_{y}}\right)^{2} + \left(\frac{z}{\sigma_{z}}\right)^{2}\right]\right\} + \exp\left\{-\frac{1}{2} \left[\left(\frac{y}{\sigma_{y}}\right)^{2} + \left(\frac{z}{\sigma_{z}}\right)^{2}\right]\right\}\right]$$

Table to be filled in during class: Note: U = 5.5 m/s, H = 120 m, and $\dot{m}_{j,s} = 110$ g/s.

Ũ	
<i>x</i> (km)	$c_j (\mu g/m^3)$
0.4	0.181
0.6	18.7
0.8	82.1
1.0	145
1.2	180
1.4	192
1.6	189
1.8	179

<i>x</i> (km)	$c_j (\mu g/m^3)$
2.0	166
2.2	153
2.4	139.6
2.6	127.4
2.8	116
3.0	106.5
3.2	98
3.4	89.5

S hax

$$\frac{2}{100} \frac{1}{100} = \frac{1}{100} + \frac{1}{1$$