Today, we will:

- Discuss the **Gaussian puff diffusion model** (sudden burst of air pollution from a point)
- Discuss particle vs. steam plumes and how to distinguish them (Slides)
- Start talking about **particles** (sizes, shapes, terminology, classifications, etc.) (Slides)

GAUSSIAN PUFF DIFFUSION MODEL

-model a sudden burst of air pollution, like an explosion or a terror attack, or ruptured tank

- model as an Instantaneous point source e t-0

Led my = map of species is released at time to is @ Heyht H

Garphin Lytoburhais in all 3 directions X, y, 7

If absorbing ground - we we one source as shown

If reflecting grand - we add an image source @ 3=-H

Eq. is same as before, Gaussian distribution eq., except we cannot ignore differen in X-direction i it is unitard

Simplification - do a coordinate transformation - more with the buff

Use X-Ut instal of X

Solution, Ex y very similar to The smake plume:

$$D_{j}(x,y,o) = \begin{cases} 0 \\ (-1)(x,y,o,t)(Jt) \end{cases} = D_{oje} \text{ of } j \text{ that a person}$$

$$\text{On } ground \text{ is exposed to}$$

$$\left\{ 0, \right\} = \left\{ \left(\frac{m_{AJJ}}{L^{3}} \right) \cdot \left\{ \right\} \right\} \qquad \text{typ. unity} \qquad \frac{mg \cdot s}{m^{3}} \quad \text{or} \quad \frac{Mg \cdot s}{m^{3}}$$

Plus (1) Into (2) is integrate:

7-4=H when 7=0

At ground level:

$$D_{j}(xy_{0}) = \frac{M_{j}}{\pi G_{i}G_{i}U} \exp \left\{ -\frac{1}{2} \left[\left(\frac{y}{G_{x_{i}}} \right)^{2} + \left(\frac{H}{G_{z_{i}}} \right)^{2} \right] \right\}$$

& Gaussian Pull Diffying Absorbing from a ground level

If H=0 (ground-level source)

If the grown I is reflecting, all an image source @ 7 =-H
it Doubles the lose at grown level

Example: Gaussian puff diffusion

A ground-level tank containing 10 kg of hydrogen cyanide (HCN) ruptures at a chemical plant early in the morning. The atmosphere is very stable, and a gentle breeze is blowing at U = 1.5 m/s. The ground absorbs the HCN on contact. Workers downwind of the explosion are exposed to the HCN.

To do:

- (a) Estimate the dose of HCN that would constitute hazardous conditions for the workers.
- (b) Predict the dose directly downwind. How far downstream is this hazardous?

Solution:

Dole control process in
$$0$$
 j'wer = $\left(2 \frac{m_s}{m_s}\right) \left(12 \frac{m_s}{m_s}\right) \left(\frac{m_s}{m_s}\right)$

(b) Table
$$\rightarrow$$
 "very stable atm" \rightarrow $A = 0.02$ $b = 0.89$ $G_{y;} = a \times b$ $C = 0.05$ $J = 0.61$ $G_{z;} = c \times b$ $G_{z;} = c \times b$ Equation for ground level dose, absorbing ground: $U = 1.5 \text{ m/s}$

$$D_{j}(x, y, 0) = \frac{m_{j}}{\pi U \sigma_{yi} \sigma_{zi}} \exp \left\{ -\frac{1}{2} \left[\left(\frac{y}{\sigma_{yi}} \right)^{2} + \left(\frac{H}{\sigma_{zi}} \right)^{2} \right] \right\}$$

Table to be filled in during class:

x (km)	$D_i (\mathrm{mg}\mathrm{s/m}^3)$
1.0	67,100
1.5	36,500
2.0	23,700
2.5	17,000
3.0	12,900
3.5	12,900 10,200
4.0	8,300
4.5	7 030

x (km)	$D_i (\mathrm{mg}\mathrm{s/m}^3)$
-	-
5.0	6000
5.5	5200
6.0	5200 4570
6.5	4050
7.0	3,620
7.5	3,623 2,970
8.0	2,970

Answer - any worker closer than about 6.2 km 15 exposed to a "hatardow" level