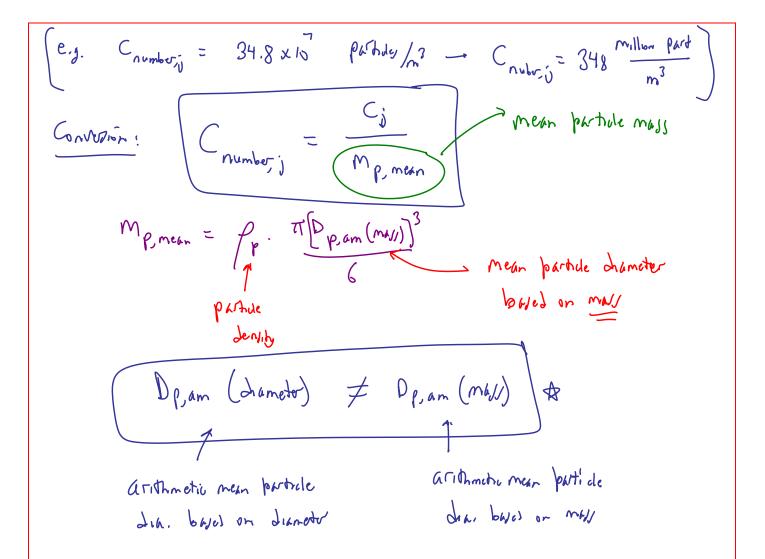
M E 433

Professor John M. Cimbala


Today, we will:

- Finish Powerpoint slide show on particles
- Discuss particle terminology & definitions
- Define and discuss **number concentration** and how to define mean particle size
- Discuss **particle motion** how particles move through the air; equations of motion

Summary - Remember These !

$$\frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 2 \ D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 1 \ \mu m}{D_{p} > 1} \ \frac{D_{p} > 10 \ \mu m}{D_{p} > 10 \ \mu m} = \frac{C \ carrow \ hard \ ha$$

BH S Dy S 0.7
$$\mu$$
m \rightarrow VU.ble light Waveleyths
where interval (what or egy m)
where V is a blue during the day
 M is the day
 M is a blue M is a blue during the day
 M is a blue M is

Example: Comparison of arithmetic mean diameter based on diameter vs. mass
Given: Three particles occupy a cubic meter, as shown in the table. The density of the particles is 1000 kg/m³. [Some people call this *unit density*, which is the density of water.]
To do: Calculate and compare D_{nam} (diameter) and D_{nam} (mass).

Solution:

Particle ID	D_p (micron)	$m_p = \frac{(\rho_p \pi D_p^3)}{6} (\mu g)$	
1	1	5.23599×10^{-7}	\leftarrow
2	2	(4.1887×10^{-6})	
3	3	1.41372×10^{-5}	

$$\int \delta m \rho h c_{A} h c_{P} = (1000 \frac{k_{B}}{m^{2}}) TT \left(\frac{1.0 \times 10^{6} \text{ m}^{3}}{6} \left(\frac{10^{6} \mu g}{g} \right) \left(\frac{1000 \text{ g}}{k_{B}} \right) = 5.236 \times 10^{7}}{0} \right)$$

$$D \rho, \delta m (diametr) = \sum (0 \rho) / n \rho m v v v = (1 + 2 + 3)/3 = \frac{2.0 \text{ Mm}}{2.0 \text{ Mm}} = \frac{0}{0} \rho, \delta m (dia)$$

$$M \rho, m e \delta n = \sum M \rho / n \rho m v v v v = (\delta d d t m v s) = \frac{6.2831 \times 10^{6} \text{ Mg}}{3} = \frac{6.2831 \times 10^{6} \text{ Mg}}{1000 \text{ M}} \right)$$

$$D \rho, \delta m (m v v r) = \left(\frac{6 \text{ M} \rho, m c \delta n}{10 \text{ P}} \right)^{1/3} - \frac{2.29 \text{ Mm}}{2.29 \text{ Mm}} = 0 \rho, \delta m (m v v v) \right)$$

Example: Calculation of number concentration from mass concentration Given: The PM_{2.5} mass concentration of a sample of city air is right at the NAAQS limit

for 24-hour exposure, namely 35 μ g/m³. The density of the particles is 1250 kg/m³. The mean particle diameter based on mass is measured to be $D_{p,am}$ (mass) = 1.5 microns.

To do: Calculate the number concentration of particles, $c_{\text{number},j}$ in units of millions of particles per cubic meter. [Be careful with the units – answer should be between 10 and 50.]

Solution:

$$\begin{array}{c}
\left(1 & \frac{k_{2}}{k_{2}}\right) = \frac{c_{j}}{m_{p,m(en)}} = \frac{c_{j}}{\rho_{p}} \pi \left[\frac{c_{j}}{p} \pi \left[\frac{c_{m}}{m_{m}}\left(\frac{m_{m}}{m_{m}}\right)\right]^{3}\right] \\
\begin{array}{c}
\left(1 & \frac{k_{2}}{m_{p}}\right) = \frac{c_{m}}{m_{p}}\left(\frac{c_{m}}{m_{p}}\right) = \frac{c_{m}}{m_{p}}\left(\frac{c_{m}}{m_{p}}\right) + \frac{c_{m}}{m_{p}}\left(\frac{c_{m}}{m_{p}}\right) + \frac{c_{m}}{m_{p}}\left(\frac{c_{m}}{m_{p}}\right) + \frac{c_{m}}{m_{p}}\right) \\
= \frac{c_{m}}{m_{p}}\left(\frac{c_{m}}{m_{p}}\right) + \frac{c_{m}}{m_{p}}\left(\frac{c_{m}}{m_{p$$