M E 433 Professor John M. Cimbala Lecture 23 Today, we will: Discuss drag coefficient and use it in the equations of motion for particle trajectories Discuss the **Cunningham correction factor** (small particles; free molecular flow effects) In preation of V Fdrag = ½ pV Co A (from fluids class) drag coeff. recall De partite (air) Spher A -This V is the velocity of the air relative to the particle where we want Vr air --- pathde 11 v---V=-V for our anaboliv $\vec{F}_{diga} = \frac{1}{2} \varphi \left[-\vec{V_r} \right] \vec{V_r} \left[C_0 \frac{\pi D_r^2}{4} \right]$ "trick" A yet both magnitule ! direction $F_{Lros} = -\frac{1}{8} \varphi C_o \pi D_p^2 \vec{v}_r |\vec{v}_r|$ $M_p \ddot{a}_p = F_{grav} + F_{dray} / l_p = l_{partials}$ Acceloritin $m_{p}\left(\frac{J\vec{v}}{Jt}\right) = \frac{\pi \rho_{p}^{2}}{\rho}\left(\rho_{p} - \rho\right)\vec{g} - \frac{1}{2}\rho c_{0}\pi \rho_{p}^{2}\vec{v}r\left|\vec{v}r\right|$ Eq of motion for a particle moving in an air stream (sphere) $\vec{a}_{p} = \vec{dV}$ we need og. for G

Eq. f. 6
For
$$Re = 0.1$$
 $Go = \frac{24}{Re}$ (States regime)
For $0.1 \leq Re \leq 5$ $Go = \frac{24}{Re}$ (1+ 0.0916 Re) A C Me will use
map often
for $5 \leq Re \leq 1000$ $Go = \frac{24}{Re}$ (1+ 0.158 $R^{3/2}$) Applies the
for $Re \leq 0.1$
Modefication for very small particles \rightarrow molecular effects are important
 $\lambda = mesn free path of air molecular
 $\lambda = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.499} \int \frac{\pi}{8y} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.000} \int \frac{\pi}{8} P$ $este (1 = 0.06704 \, \mu m) x$
 $M = \frac{M}{0.000} \int \frac{\pi}{8} P$ $este (1 = 0.06704 \, \mu m)$ $este ($$

Example: Variation of Cunningham correction factor with particle diameter

Given: Air at STP has mean free path $\lambda = 0.06704$ microns. Knudsen number is defined as $Kn = \lambda / D_p$. Cunningham correction factor is C = 1 + Kn [2.514 + 0.80 exp(-0.55 / Kn)].

To do:

Calculate C for various values of particle diameter D_p . [Give your answer to 4 significant digits, and be careful with units.] $feat = 0_p C$

Solution:

Table to be filled in during class:

