

To do: For each diameter, calculate the removal grade efficiency $E(D_p)$ (in %) for each particle diameter D_p in the table below.

Solution: Table to be filled in during class:

$D_p(\mu m)$	$v_r (\mathrm{m/s})$	$E(D_p)$ (%)				
1	0.000506747			$D_p(\mu m)$	v_r (m/s)	$E(D_p)$ (%)
1.5	0.001085343			10	0.043982967	
2	0.001880751			20	0.171476946	
2.5	0.002892936			25	0.262745185	
3	0.004121854			30	0.368588815	
4	0.007229597			40	0.609606668	
5	0.011203123			50	0.867242208	
7	0.021741295			70	1.388132409	
Equations:	Well-mixed: <i>E</i>	$(D_p) = 1 - \frac{c_j}{c_j}$	n) =	$=1-\exp\left(-\frac{1}{2}\right)$	$\left(\frac{x}{L_c}\right)$, where $\left(\frac{L_c}{L_c}\right)$	$=W\frac{U_{\theta}}{v_{r}}, x=r_{m}$

Filled in Table:

$D_{p}\left(\mu\mathrm{m} ight)$	v_r (m/s)	$E(D_p)$ (%)
1	0.000506747	0.41534198
1.5	0.001085343	0.88746518
2	0.001880751	1.53285045
2.5	0.002892936	2.34805352
3	0.004121854	3.32874447
4	0.007229597	5.76504009
5	0.011203123	8.79083189
7	0.021741295	16.3532896

$D_p(\mu m)$	$v_r (\mathrm{m/s})$	$E(D_p)$ (%)
10	0.043982967	30.3192386
20	0.171476946	75.5464314
25	0.262745185	88.4445008
30	0.368588815	95.1555464
40	0.609606668	99.3308325
50	0.867242208	99.9193602
70	1.388132409	99.9988818

U

 c_i (out)

