

E.g., Calvert i. Englund (1984) - developed an empired curve fit
(Simple eq.)
Noter: 1) U₀ = speed of air relative do the falling drop
U₀ = V_{tinp} = V_{tic}
2) Spherical drop - but we wake for any drope
J) Worky only when
$$D_p < D_c$$

U₀ - V_{tip} = V_{tic}
 $V_{tip} < V_{tic}$
 $V_{tip} < V_{tip}$
 $V_{tip} < V_{tic}$
 $V_{tip} < V_{tic}$
 $V_{tip} < V_{tip}$
 $V_{tip} < V_$

Example: Single-drop collection grade efficiency for one particle diameter

Given: Raindrops of diameter 200 microns are falling through dusty air at STP ($\rho = 1.184$ kg/m³, $\mu = 1.849 \times 10^{-5}$ kg/(m s)). The uniformly distributed aerosol particles are of unit density ($\rho_p = 1000$ kg/m³), and of diameter 5 microns.

To do: Calculate the single-drop collection grade efficiency $E_d(D_p)$ as a percentage to three significant digits for these particles.

Solution:

On:
CAL.
$$V_{t_c} = V_0$$
 for $a_{in} d_{ip} - gavinetric setting $V_{t_c} = V_{00} \int_{n_1}^{n_1} (w_{trr})$
 $\rightarrow D_0$ iteration wing $C_0 = C_0(R_0)$, $C = C_{unagylein}$ etc.
 $\rightarrow V_{t_c} = U_0 = 0.700464 M/s$
 $V_{t_p} - reput for the particle - $V_{t_p} = 0.00076057 M/s$
 $V_{t_p} = reput for the particle - $V_{t_p} = 0.00076057 M/s$
 $Gh_{trr} = (f_{t_r} - f_{t_r}) O_{f_r}^2 (U_{u_r} - V_{t_p})$
 $I_{t_r} = (1000 - 1.184) M/s^2 (5 \times 10^6 m)^2 (0.700464 - 8.00076057) M/s$
 $V_{t_r} = (1000 - 1.184) M/s^2 (5 \times 10^6 m)^2 (0.700464 - 8.00076057) M/s$
 $V_{t_r} = (1000 - 1.184) M/s^2 (5 \times 10^6 m)^2 (200 \times 10^6 m)$
 $GH_{t_r} = 0.26248 [N_{0n} - J_{intensional} phone dv]$
 $E_{J}(D_{f}) = (\frac{St_{k_r}}{St_{k+1}0.35})^2 = (\frac{0.21248}{0.21248 + 0.35})^2 = 0.1837$
 $E_{J}(D_{f}) = V_{t_r} + V_{t_r} + V_{t_r} + D_{f_r} - (T_{t_r}) = V_{t_r} + V_{t_r}$$$$

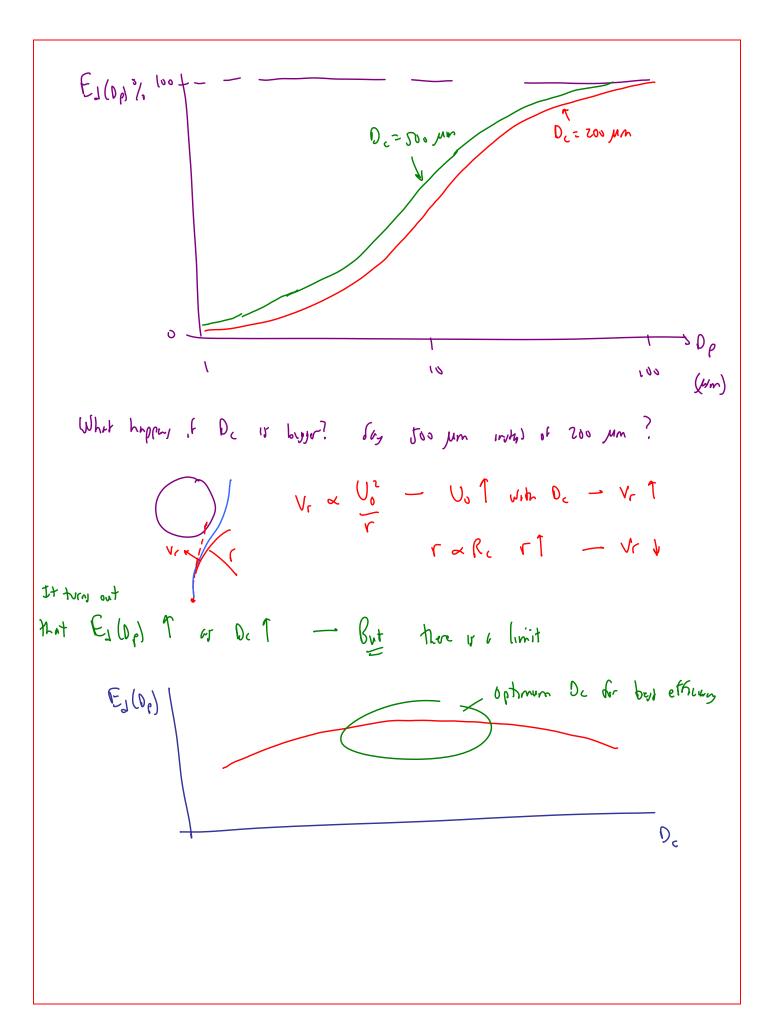
Example: Single-drop collection grade efficiency as a function of particle diameter Given: A polydisperse aerosol at STP ($\rho = 1.184 \text{ kg/m}^3$, $\mu = 1.849 \times 10^{-5} \text{ kg/(m s)}$) is cleaned by raindrops of diameter 200 microns. The particles are of unit density ($\rho_p = 1000 \text{ kg/m}^3$). The raindrop (the "collector" falls at terminal gravitational settling velocity $V_{t,c} = 0.700464 \text{ m/s}$. For convenience, I have pre-calculated the terminal gravitational settling velocity $V_{t,p}$ for various particle diameters. Assume that particles are absorbed by the raindrop when they hit the raindrop, and are therefore removed from the air.

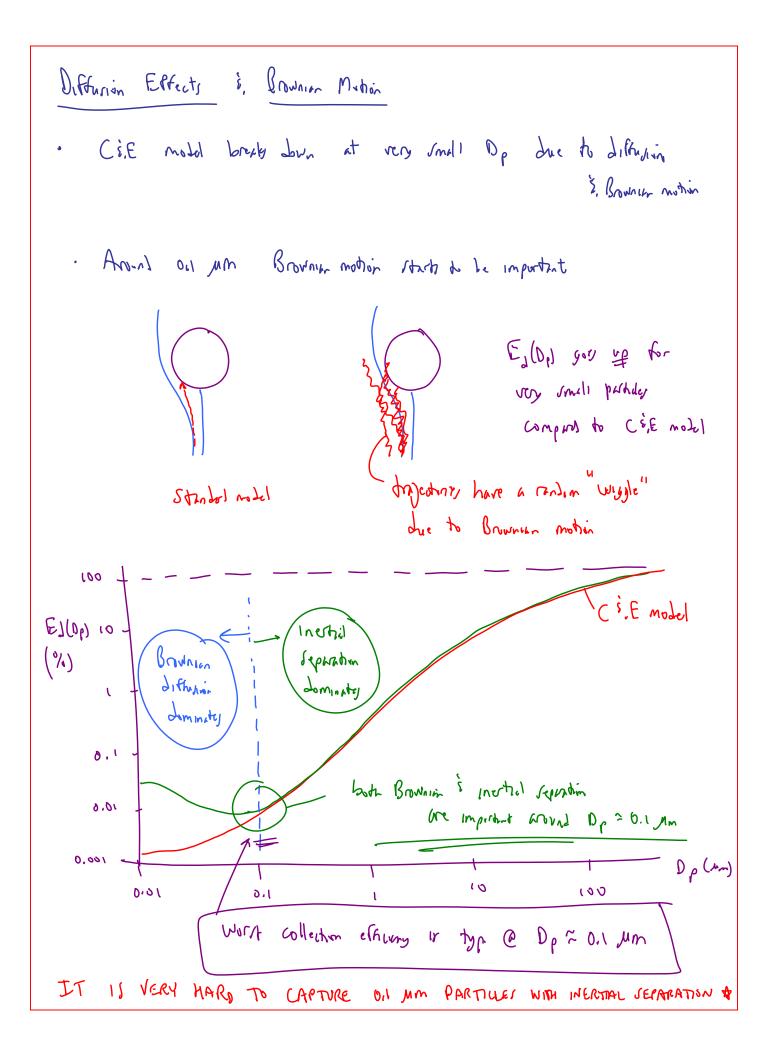
To do: For each diameter, calculate the single-drop collection grade efficiency $E_d(D_p)$ as a percentage to three significant digits for each particle diameter D_p in the table below.

Solution: Table to be filled in during class:

$D_p(\mu m)$	V_t (m/s)	$E_d(D_p)$ (%)
2	0.000127646	l.12
3	0.000279763	4.52
4	0.000490739	10.5
7	0.001476776	35.4
8.5	0.002168354	46.8
10	0.002992228	56.2
15	0.006692553	75.7
20	0.01185533	84.99

Vtr J			
$D_p(\mu m)$	V_t (m/s)	$E_d(D_p)$ (%)	
25	0.018468719	89.9	
30	0.026513567	92.7	
40	0.046775902	95.7	
50	0.072295146	97.1	
70	0.13687402	983	
85	0.194258109	98.7	
100	0.25629326	98.9	


18 NOC


 $E_{1}(0p) = \left(\frac{J\delta k}{J + 0.3T}\right)^{2}$

Filled in Table:

V_t (m/s)	$E_d(D_p)$ (%)
0.000127646	1.149675069
0.000279763	4.524218465
0.000490739	10.52314578
0.001476776	35.38805555
0.002168354	46.76422259
0.002992228	56.15821262
0.006692553	75.69004041
0.01185533	84.99538738
	0.000127646 0.000279763 0.000490739 0.001476776 0.002168354 0.002992228 0.006692553

D_p (μ m)	V_t (m/s)	$E_d(D_p)$ (%)
25	0.018468719	89.89263573
30	0.026513567	92.73095237
40	0.046775902	95.6846146
50	0.072295146	97.09435181
70	0.13687402	98.33191736
85	0.194258109	98.73657951
100	0.25629326	98.95794227

