
Today, we will:

- Continue discussing aerosol particle statistics: mass distribution, and cumulative mass distribution.
- Finish discussing aerosol particle statistics: Predict how the particle statistics change after passing through an APCS.
- News article presentation by Isaac Moore

For our example data from the handout
$$D_{p,50} = 4.7 \, \mu m$$
 $D_{p,50} = 9.0 \, \mu m$ $D_{p,84.1} = 17.0 \, \mu m$

From the plat, we see that

$$\ln (D_{P,84.1}) = \ln (D_{P,50}) + \ln (\sigma_{g})$$
 $\ln (D_{P,84.1}) = \ln (D_{P,50} \cdot \sigma_{g})$
 $e^{c} \rightarrow D_{P,84.1} = D_{P,50} \cdot \sigma_{g} \rightarrow G_{g} = \frac{D_{P,50}}{D_{P,50}}$

MASS DISTRIBUTION

. We know how to convot from number dut. to a may dut

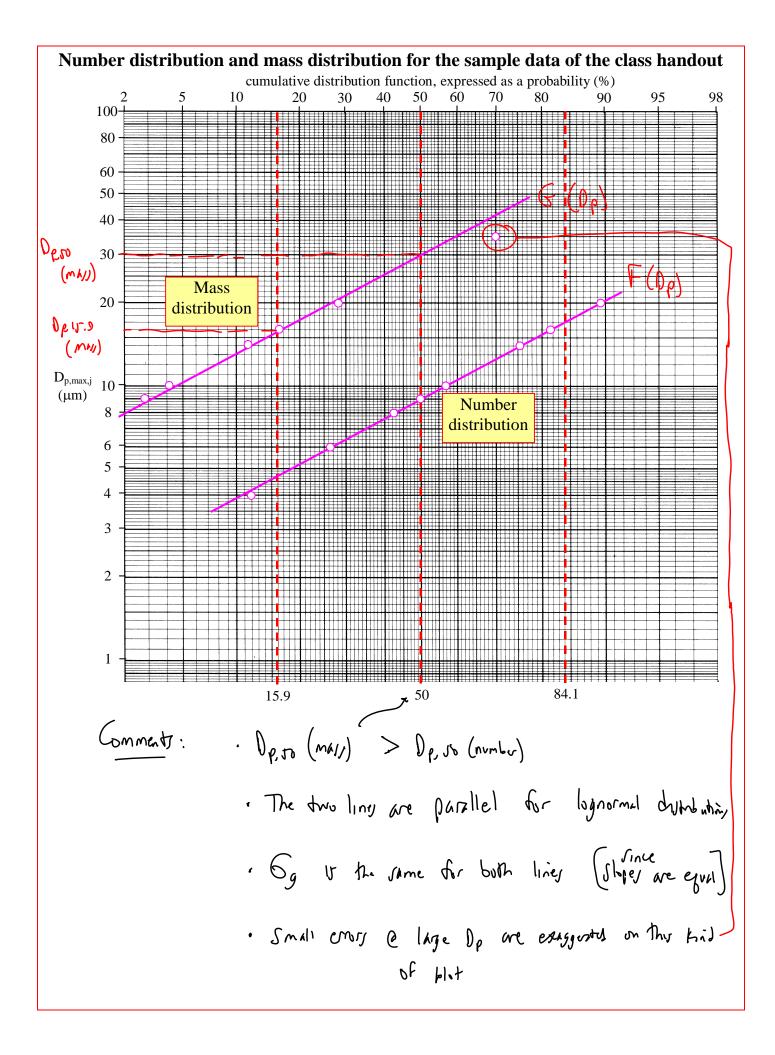
Now we can do the same kind of statistical analyse on mass invado

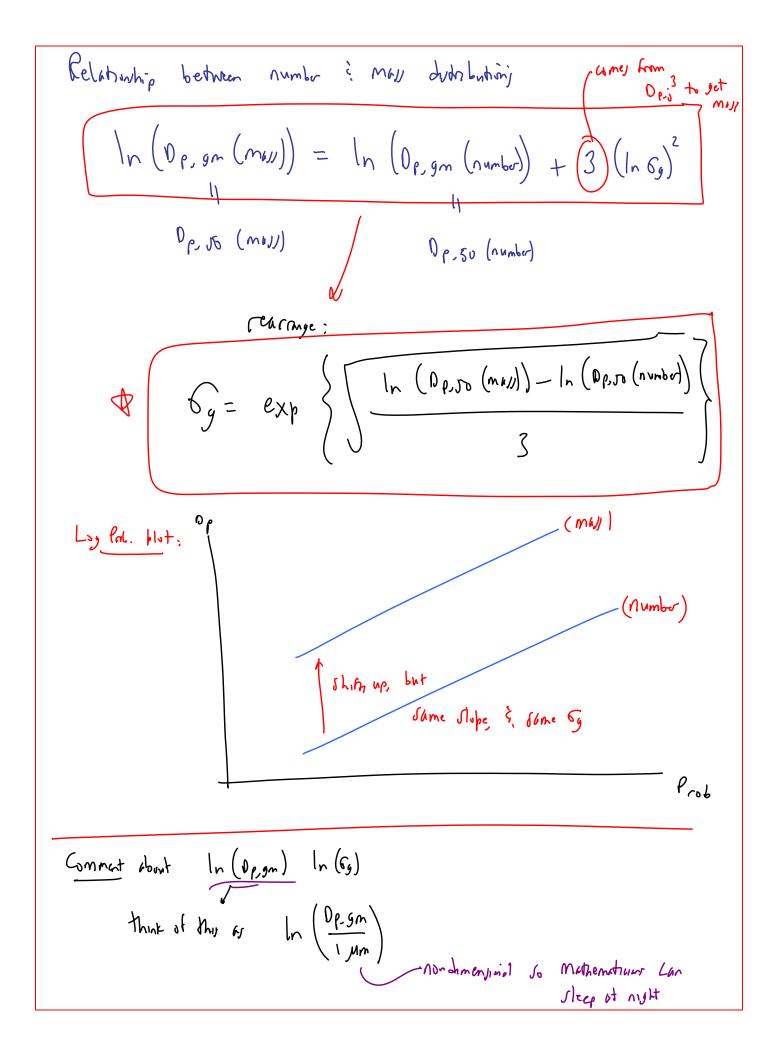
Define $g(0p,j) = \frac{m_j}{m_t} = \frac{m_{all}}{m_{all}} \frac{m_{all}}{m_{$

For the data of the previous honlout - see next table I

Mass Distribution

Additional analysis of the sample particle data (class handout; also see Excel spreadsheet):							
j = class (bin number)	D _{p,min,j} (lower limit)	`	$D_{\mathrm{p},j}$ (middle value)	$m_{j,\text{in}} = n_j \rho_p \pi D_{pj}^{3}/6 = $ mass in class j (mg)	(mass in class j divided by	$g(D_{p,j})_{in} = m_j/m_t$ (mass fraction of original aerosol)	cumulative
1	1	4	2.5	8.50848E-07	2.83616E-07	0.000373985	0.037398476
2	4	6	5	1.0472E-05	5.23599E-06	0.004602889	0.497687408
3	6	8	7	2.89147E-05	1.44573E-05	0.012709268	1.768614192
4	8	9	8.5	2.41166E-05	2.41166E-05	0.01060031	2.828645219
5	9	10	9.5	3.00777E-05	3.00777E-05	0.013220447	4.150689966
6	10	14	12	0.000168289	4.20722E-05	0.073970273	11.54771722
7	14	16	15	0.000107796	5.38979E-05	0.047380992	16.28581641
8	16	20	18	0.000241237	6.03092E-05	0.106034	26.88921637
9	20	35	27.5	0.00098003	6.53353E-05	0.430765712	69.96578759
10	35	50	42.5	0.000683305	4.55536E-05	0.300342124	100
11	50	100	75	0	0	0	∮ 100
Mass of particles in class j : m_j Cumulative mass distribution function: $G(D_p)$ [sometimes written as M/m .]							


Mass of particles in class *j* divided by class width: $m_j/(\Delta D_{p,j})$


Mass fraction of particles in class *j*: $g(D_{p,j}) = m_j/m_t$

written as M_j/m_t]

When plot this on logprobability paper, remember to use $D_{p,\max,j}$, not $D_{p,j}$ since the cumulative distribution function includes the entire bin from min to max.

WARNING

