

In this lesson, we will:

- Derive the general **compressible Bernoulli equation** for inviscid regions of flow
- Simplify this compressible Bernoulli equation for **irrotational flow** and for **barotropic flow**

Derivation of the Compressible Bernoulli Equation for Inviscid Regions of Flow

Start with the **Euler equation** (inviscid form of the Navier-Stokes equation),

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + g_i$$

- Use one of the vector equations from the previous lesson
- Use the "trick" from the previous lesson for g_i

↓

$$\cancel{\frac{\partial u_i}{\partial t}} + \frac{\partial}{\partial x_i} \left(\frac{1}{2} u_j u_j \right) + \frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_i} (g_i) = u_j \epsilon_{ijk} \omega_k$$

(8)

EULER EQUATION

Simplifications of Eq. (8)

a. **IRROTATIONAL**, **ISENTROPIC**, **STEADY**, **INviscid**, **BUT COMPRESSIBLE**

From thermo, $T ds = de + p dv$

specific volume $= \frac{1}{\rho}$

$$T ds = dh - \frac{1}{\rho} dp$$

$$dh = \frac{1}{\rho} dp$$

Following a fluid particle,

$$\therefore \frac{Dh}{Dt} = \frac{1}{\rho} \frac{Dp}{Dt}$$

steady

$$\frac{\partial h}{\partial t} + u_i \frac{\partial h}{\partial x_i} = \frac{1}{\rho} \frac{\partial p}{\partial t} + \frac{1}{\rho} u_i \frac{\partial p}{\partial x_i}$$

$$\frac{\partial h}{\partial x_i} = \frac{1}{\rho} \frac{\partial p}{\partial x_i}$$

$$\text{EQ.(8)} \Rightarrow \frac{\partial}{\partial x_i} \left(\frac{1}{2} u_i u_j \right) + \frac{\partial h}{\partial x_i} + \frac{\partial}{\partial x_i} (gz) = 0$$

\downarrow
 V^2

$$\frac{\partial}{\partial x_i} \left[h + \frac{1}{2} V^2 + gz \right] = 0$$

$h + \frac{1}{2} V^2 + gz = \text{constant everywhere}$

(9)

BERNOULLI EQUATION FOR STEADY, ENTROPIC, INVISCID, IRROTATIONAL FLOW
(but compressible)

[BELOVED BERNoulli]

$$h + \frac{1}{2} V^2 + gz = \text{constant everywhere}$$

$$h = e + \frac{p}{\rho}$$

b. BAROTROPIC $\rightarrow \underline{\underline{\rho = \rho(P)}}$ only e.g., isentropic ideal gas
 $\rho = \text{const.} \cdot P^{\frac{1}{\gamma}}$
 $\gamma = \frac{C_p}{C_v}$ (often γ is k instead)

1) Steady $\frac{1}{2} V^2 + \frac{dh}{\rho} + gz = \text{constant along a streamline}$

BERNOULLI EQUATION FOR BAROTROPIC, STEADY, INVISCID FLOW
(can be rotational)

Simplifications of the Compressible Inviscid Bernoulli Equation (CONTINUED)

2) Steady i. irrotational

$$\star \boxed{\frac{1}{2}V^2 + \int \frac{dp}{\rho} + gz = \text{const everywhere}}$$

BERNOULLI EQ FOR BAROTROPIC, STEADY, INVISCID, IRROTATIONAL FLOW

3) Unsteady i. irrotational

$$\star \boxed{\frac{d\phi}{dt} + \frac{1}{2}V^2 + \int \frac{dp}{\rho} + gz = f(t)}$$

BERNOULLI EQ FOR BAROTROPIC, IRROTATIONAL, UNSTEADY, INVISCID FLOW

Summary: Various Forms of the Bernoulli Equation

Note: The fluid is assumed to be Newtonian, and gravity is assumed to act in the negative z direction [positive z is “up”]. All forms of the Bernoulli equation shown below are derived from the Navier-Stokes equation, along with some useful **vector identities**,

$$u_j \frac{\partial u_i}{\partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{1}{2} u_j u_j \right) - u_j \epsilon_{ijk} \omega_k, \text{ and } \frac{\partial^2 u_i}{\partial x_j \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial u_j}{\partial x_j} \right) - \epsilon_{ijk} \frac{\partial \omega_k}{\partial x_j}.$$

1. Incompressible Flow: Start with the **incompressible N-S equation**:

$$\rho \frac{\partial u_i}{\partial t} + \rho u_j \frac{\partial u_i}{\partial x_j} = - \frac{\partial p}{\partial x_i} + \rho g_i + \mu \frac{\partial^2 u_i}{\partial x_j \partial x_j}$$

a. Incompressible, Unsteady, and Irrotational (can be viscous):

$$\frac{\partial \phi}{\partial t} + \frac{p}{\rho} + \frac{1}{2} u_i u_i + gz = F(t) \text{ or } \frac{\partial \phi}{\partial t} + \frac{p}{\rho} + \frac{1}{2} V^2 + gz = F(t)$$

where $V^2 = u_i u_i = |\vec{u}|^2$ = magnitude of the velocity vector squared, ϕ is the **velocity potential** defined by $\vec{u} = \vec{\nabla} \phi$ or $u_i = \phi_{,i}$ (ϕ is definable *only* if the flow is *irrotational*), and F is a function of time, but not of space.

b. Incompressible, Steady, and Irrotational (can be viscous): [This is the “Beloved Bernoulli Equation.”]

$$\frac{p}{\rho} + \frac{1}{2} V^2 + gz = \text{constant everywhere}$$

c. Incompressible, Steady, and Inviscid (can be rotational): [This is the “Second-Most Beloved Bernoulli Equation.”]

$$\frac{p}{\rho} + \frac{1}{2} V^2 + gz = \text{constant along a streamline}$$

2. Compressible, Inviscid Flow: Start with the **compressible Euler equation**:

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = - \frac{1}{\rho} \frac{\partial p}{\partial x_i} + g_i$$

a. Compressible, Inviscid, Steady, Isentropic, and Irrotational:

$$h + \frac{1}{2} V^2 + gz = \text{constant everywhere}$$

where h is the **specific enthalpy** $h = e + p/\rho$. [Note that this equation can also be obtained from the energy equation (first law of thermodynamics) when the same assumptions are made.]

b. Compressible but Barotropic, and Inviscid:

Note: **Barotropic** means that *density is a function of pressure only*, i.e., $\rho = \rho(p)$.

1) Barotropic, Inviscid, and Steady (can be Rotational):

$$\int \frac{dp}{\rho} + \frac{1}{2}V^2 + gz = \text{constant along a streamline}$$

2) Barotropic, Inviscid, Steady, and Irrotational:

$$\int \frac{dp}{\rho} + \frac{1}{2}V^2 + gz = \text{constant everywhere}$$

3) Barotropic, Inviscid, Unsteady, and Irrotational:

$$\frac{\partial \phi}{\partial t} + \int \frac{dp}{\rho} + \frac{1}{2}V^2 + gz = F(t)$$

where velocity potential ϕ can be defined *even if the flow is compressible*, as long as it is *irrotational*.