Today, we will:

- Discuss propulsion of fish, birds, and sailboats
- Do Candy Questions for Candy Friday
- Begin a new major topic: Laminar Flow Solutions

4. Propulsion of fish & birds (see Sec. 15.13 in book)
 a. Fish - neutrally buoyant - need a thrust, but do not need lift

 Frame of ref: relative to the fish's body
 • \(U \)
 • \(V \)

 Net hydrodynamic force
 • Net force: thrust
 • Net force: lift
 • Net force: drag

 "Upstroke" - reverse the fin orientation

 Frame of ref: relative to the fish's tail fin
 • \(U_r \) - relative velocity that fin "sees"
b. Birds: Must generate **thrust & lift**

Downstroke: Pretty much same as the fish

Upl stroke: - basically do nothing (thrust or lift)

5. Force on a sailboat → How to sail “into the wind”

Look at frame of ref. of the sail, consider aerodynamic force
Frame of ref. of the keel (in the video)

\[\mathbf{\tilde{F}}_{\text{aero}} = -\mathbf{\tilde{F}}_{\text{hydro}} \]
Laminar Flow Solutions (Ch. 9)

A. Intro i. review

"Nearly incompressible" flow \rightarrow Liquids \rightarrow $\rho = \text{const. everywhere}$

ν \rightarrow Very small Mach #

\therefore Density changes are negligible

ii. Buzgany \rightarrow Due to temperature effects

(hot fluid wants to rise)

iii. Boussinesq approx \rightarrow Let $\rho = \text{constant} = \rho_0$ everywhere except in the gravity term

where $\rho = \text{func. of } T$

Temperature T then gets coupled into the mom. eq.

SEE HANDBOUT FOR THE EQUATIONS

(also copied on next page)
Assumptions and Approximations
- The fluid is **Newtonian** with constant properties ($\mu, \nu, k, \alpha, \kappa, C_p$).
- The flow is **laminar** rather than transitional or turbulent.
- The fluid is **nearly incompressible** – either an incompressible liquid or an ideal gas at very low Mach numbers.

Differential Equations of Motion for Nearly Incompressible Flow (general review)
- **Conservation of mass:**
 \[
 \frac{\partial u_i}{\partial x_i} = 0.
 \]
- **Momentum equation:**
 \[
 \rho \frac{Du_i}{Dt} = \rho \frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \rho g_i + \mu \frac{\partial^2 u_i}{\partial x_i \partial x_j}.
 \]
- **Conservation of energy (first law): For incompressible liquid:**
 \[
 \rho C_p \frac{DT}{Dt} = \kappa \frac{\partial^2 T}{\partial x_i \partial x_i} + \phi, \quad \text{where} \quad \phi = 2\mu \varepsilon_0.
 \]
 For ideal gas at very low Ma:
 \[
 \rho C_p \frac{DT}{Dt} = \frac{\kappa}{\rho_c} \frac{\partial^2 T}{\partial x_i \partial x_i} \quad \text{or} \quad \frac{DT}{Dt} = \frac{k}{\rho_c} \frac{\partial^2 T}{\partial x_i \partial x_i} \quad \text{(where} \quad \kappa = \frac{k}{\rho_c} = \text{thermal diffusivity}).
 \]
- **Vorticity equation:**
 \[
 \frac{D\omega_k}{Dt} = \omega_j \frac{\partial u_k}{\partial x_j} + v \frac{\partial^2 \omega_k}{\partial x_j \partial x_j}.
 \]

Differential Equations of Motion for Nearly Incompressible Flow with Buoyancy
- **Boussinesq approximation** (See Kundu, Section 4.18): Assume that changes in density ρ are negligible everywhere except in the gravity term (buoyancy), where we let $\rho = \rho_0 [1 - \alpha (T - T_0)]$ where α is the thermal expansion coefficient, $\alpha = \frac{-1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)$ (for an ideal gas, $\alpha = \frac{1}{T}$), and ρ_0 is a reference density corresponding to reference temperature T_0. (T is assumed to vary only slightly from T_0, so that density is nearly constant, but does lead to buoyancy in the flow.) The density is assumed to equal ρ_0 in all other terms in the equation.
- The continuity and vorticity equations are the same as above, since density does not appear in these equations.
- The momentum equation becomes
 \[
 \frac{\rho Du_i}{Dt} = \frac{\rho_0 Du_i}{Dt} \left[\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} \right] = -\frac{\partial p}{\partial x_i} + \rho_0 [1 - \alpha (T - T_0)] g_i + \mu \frac{\partial^2 u_i}{\partial x_i \partial x_j},
 \]
 or
 \[
 \frac{Du_i}{Dt} = \left(\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} \right) = -\frac{1}{\rho_0} \frac{\partial p}{\partial x_i} + \left[1 - \alpha (T - T_0) \right] g_i + \mu v \frac{\partial^2 u_i}{\partial x_i \partial x_j},
 \]
 where $v = \frac{\mu}{\rho_0}$.
- The energy equation then becomes: For incompressible liquid:
 \[
 \rho_0 C_p \frac{DT}{Dt} = \kappa \frac{\partial^2 T}{\partial x_i \partial x_i} + \phi.
 \]
 For ideal gas at very low Mach number:
 \[
 \frac{DT}{Dt} = \frac{k}{\rho_0 C_p} \frac{\partial^2 T}{\partial x_i \partial x_i}, \quad \text{where} \quad \kappa = \frac{k}{\rho_0 C_p} \quad \text{& viscous dissipation is negligible.}
 \]

Solution Technique for Nearly Incompressible Laminar Flow without Buoyancy
1. Write the continuity and momentum equations. (*Note: The energy equation is uncoupled if there is no buoyancy. If buoyancy is important, the energy equation must be solved simultaneously with mass and momentum.*)
2. Simplify the equations as much as possible (cross off zero terms, etc. – always justify your simplifications).
3. Solve for u_i and p. (This step will generate some constants from the integration).
4. Apply BCs (on u_i and p) to solve for the unknown constants. (Now u_i and p are known everywhere.)
5. Write the energy equation. (uncoupled)
6. Simplify as much as possible.
7. Solve for T. (This step will generate some constants from the integration).
8. Apply BCs (on T) to solve for the unknown constants. (Now T is known everywhere, and we are finished.)
Mathematically, for buoyant, nearly incomp. flow,

\[\begin{align*}
5 \text{ unknowns: } & U_i, p, T \\
\rho &= \text{fre. of } T \text{ is not an "unknown"} \\
5 \text{ eqs: } & \begin{align*}
\text{mass} (1) \\
\text{mom.} (2) \\
\text{en.} (3)
\end{align*}
\]

For flow w/o buoyancy,

\[\begin{align*}
4 \text{ eqs: } 4 \text{ unknowns: } & U_i, p, \text{ (remove } T \text{)} \\
\text{ (remove energy)}
\end{align*} \]

Then, we can solve energy separately. \(\Rightarrow \) solve for \(T \) once we know \(U_i \) and \(p \)

How to solve these diff. eq's?

a) **Analytic solution** — possible only for very simple geometries.

b) **Similarity solutions** — but more complex than a)

c) **Computational solution** — solve PDEs directly

Also often involve a computer, but solve ODE's not PDE's