Today, we will:

- Discuss the “dynamic pressure” – also called the “modified pressure”
- Do an example analytical solution – steady flow between infinite parallel plates
- If time, briefly discuss some other exact analytical solutions

2. The “dynamic pressure” (or better “modified pressure”)

\[\rho \frac{D\vec{u}}{Dt} = \rho \vec{g} - \nabla \psi + \mu \nabla^2 \vec{u} \]

Hydrostatic condition (flow is at rest \(\rightarrow \) no flow \(\rightarrow \) \(\vec{u} = 0 \))

1. becomes \(0 = \rho \vec{g} - \nabla \psi \)

2. \(\psi \) = hydrostatic pressure

Subtract (2) from (1)

\[\rho \frac{D\vec{u}}{Dt} = -\nabla (\psi - \psi_s) + \mu \nabla^2 \vec{u} \]

\(\psi_s \) = Kutta calls this the "dynamic pressure"

Poor choice of units \(\rightarrow \) dynamic pressure \(\equiv \frac{1}{2} \rho \vec{u}^2 \) or \(\frac{1}{2} \rho \vec{V}^2 \)

Other names are “modified pressure” \& “excess pressure”\& “total hydrostatic pressure”

Gravity term disappear in the NS eq.

E.g., if \(\vec{g} \) acts in \(-z\) direction, \(\psi_s = \bar{\psi} = \psi + \rho g z \)

[Known then drop the subscript \(\bar{\phi} \) from here on]
Physically this means:

Gravity does not affect the dynamic of the flow field

- It only contributes to a "superposed" hydrostatic pressure component.

[In CFD code like Fluent, \(p \) is actually the modified pressure]

Exception: if there are free surfaces

or interfaces between two fluids

- If there are buoyancy forces

 e.g. Boussinesq approx \(\rightarrow \) add density buoyancy effects in the gravity term

\[
\rho \frac{D\mathbf{u}}{Dt} = -\nabla p_d + \mu \nabla^2 \mathbf{u}
\]

Notice: gravity term is gone.

Procedure: - Solve (3) for \(\mathbf{u} \) i.e. \(p_d \)

 * Add hydrostatic component back in at the end
B. Examples of Exact Laminar Flow Solutions

1. Steady flow between infinite parallel plates

Given: A fluid flows between two walls as sketched. The following assumptions and approximations are made:

1. walls are infinitely long, horizontal, and parallel.
2. upper wall moves at \(u = U \)
3. lower wall is stationary: \(u = 0 \)
4. incompressible flow with constant properties
5. imposed pressure gradient \(\frac{\partial p}{\partial x} \) (typically negative)
6. flow is steady: \(\frac{\partial (\text{anything})}{\partial t} = 0 \)
7. flow is two-dimensional into the page: \(\frac{\partial (\text{anything})}{\partial z} = 0 \) and \(w = 0 \)
8. gravity acts in the \(-y\) direction; \(\vec{g} = (0, -g, 0) \)
9. flow is fully developed: \(\frac{\partial (\text{any velocity})}{\partial x} = 0 \) (velocity profile does not change in \(x \))

To do: Calculate the velocity and pressure fields.

Solution:

\[\frac{\partial}{\partial x} = 0 \quad \Rightarrow \quad \nabla \neq \text{func} \left(y \right) \]

\[\left(2 \right) \quad \left(7 \right) \]

\[\begin{align*}
\text{Continuity:} & \\
\frac{\partial v}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial u}{\partial z} & = 0
\end{align*} \]

\[\Rightarrow \quad \nabla \neq \text{func} \left(y \right) \quad \text{We know that} \quad \nabla \neq \text{func} \left(x \right) \quad \text{(6)} \]

\[\nabla \neq \text{func} \left(x \right) \quad \text{(9)} \]

\[\nabla \neq \text{func} \left(x \right) \quad \text{(3)} \]

\[\begin{align*}
\text{Boundary condition:} & \\
v & = 0, \quad y = 0
\end{align*} \]

\[\Rightarrow \quad v = \text{constant} \quad \text{everywhere} \]

\[\begin{align*}
\text{Energy equation:} & \\
p \frac{\partial v}{\partial t} & = -\frac{\partial p}{\partial y} + \rho g \frac{\partial y}{\partial y} + \mu \nabla^2 y
\end{align*} \]

\[v = 0 \quad \text{(Cont)} \]

\[g_y = -g \quad \text{(Cont)} \]

\[\frac{\partial p}{\partial y} = -\rho g \quad \text{(1)} \]

\[\int_{\text{Int.}}: \quad p = p(x, y) = -\rho gy + f(x) \]
\[p \left(\frac{du}{dt} + u \frac{du}{dx} + v \frac{du}{dy} + w \frac{dw}{dz} \right) = -\frac{dp}{dt} + \rho g_x + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) \]

- Fully dev. cont Z-D
- \(p_x = 0 \) fully dev.
- 2-D

But \(u \neq \text{func. of } t, x, z \Rightarrow U = \text{func.}(y) \) only

Can we \(t \) instead of \(t \\

\[x - \text{mom} \]

\[\frac{dp}{dx} = \mu \frac{d^2 u}{dy^2} \] \hspace{1cm} (2)

Recall (1) - \(\rho = -\rho gy + f(x) \)

\[\frac{dp}{dx} = 0 + f'(x) \]

\[\frac{dp}{dx} = \text{func. of } x \] only

\[\frac{du}{dy} = \text{func. of } y \] only

Eq. (2)

\[\frac{dp}{dx} = \mu \frac{d^2 u}{dy^2} \]

\[\text{Func. of } x = \text{Func. of } y = \text{Constant} \]

OR

Alternatively, take \(\frac{d}{dx} \) of Eq. (2)

\[\frac{d}{dx} \left(\frac{dp}{dx} \right) = \frac{d}{dx} \left(\mu \frac{d^2 u}{dy^2} \right) = 0 \]

\[\frac{d}{dx} \left(\frac{dp}{dx} \right) = 0 \Rightarrow \frac{dp}{dx} = \text{constant} \]

\[p \text{ at most a linear function of } x \]
Back to Eq. (1):

\[p = -\rho g y + f(x) \]

But \(f'(x) = \frac{df}{dx} = \text{constant} \)

Integrate \(f(x) = x \frac{df}{dx} + \text{constant} \)

Finally, (i) becomes

\[p = p(x, y) = -\rho g y + x \frac{df}{dx} + \text{constant} \]

This constant does not affect the flowfield at all except to add a constant pressure gradient everywhere.

\[\frac{df}{dx} \]

is the imposed pressure gradient.

\[\frac{df}{dx} = \text{constant} \]

\[U = \frac{1}{2} \frac{df}{dx} y^2 + C_1 y + C_2 \]

\[\frac{dU}{dy} = \frac{1}{\mu} \frac{df}{dx} y + C_1 \]

Integrate

\[\frac{dU}{dy} = \frac{1}{\mu} \frac{df}{dx} y + C_1 \]

Integrate

\[U = \frac{1}{2\mu} \frac{df}{dx} y^2 + C_1 y + C_2 \]
Apply BCs to get constants c_1 and c_2.

@ $y=0, u=0$ \hspace{1cm} $0 = 0 + 0 + c_2 \rightarrow c_2 = 0$

@ $y=2b, u=U$ \hspace{1cm} $U = \frac{1}{2\mu} \frac{\partial p}{\partial x} + 2c_1b$

Solve for c_1 \hspace{1cm} $c_1 = \frac{U}{2b} - \frac{b}{\mu} \frac{\partial p}{\partial x}$

So finally,

$$u = \frac{yU}{2b} - \frac{y}{2\mu} \frac{\partial p}{\partial x} (2b-y)$$ (4)

Non-dimensionalize: Let\[
\begin{align*}
U^* &= \frac{u}{U} \\
y^* &= \frac{y}{2b}
\end{align*}
\]

Plug into (4)

get\[
U^* = y^* + \beta y^* (1-y^*)
\]

where\[
\beta = \frac{-2b^2}{\mu U} \frac{\partial p}{\partial x}
\]

= pressure gradient parameter

A kind of superposition of Couette flow \to $\frac{\partial p}{\partial x} = 0 \Rightarrow U \neq 0$

* Plane Poiseuille flow \to $U = 0, \frac{\partial p}{\partial x} \neq 0$

A combination of

\[\begin{align*}
\text{left} + \text{right}
\end{align*}\]