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Smoke-wire flow visualization and hot-wire anemometry have been used to study 
near and far wakes of two-dimensional bluff bodies. For the case of a circular cylinder 
a t  70 < Re < 2000, a very rapid (exponential) decay of velocity fluctuations at  the 
Karmin-vortex-street frequency is observed. Beyond this region of decay, larger- 
scale (lower wavenumber) structure can be seen. In  the far wake (beyond one 
hundred diameters) a broad band of frequencies is selectively amplified and then 
damped, the centre of the band shifting to lower frequencies as downstream distance 
is increased. 

The far-wake structure does not depend directly on the scale or frequency of 
Karman vortices shed from the cylinder ; i.e. it does not result from amalgamation 
of shed vortices. The growth of this structure is due to hydrodynamic instability of 
the developing mean wake profile. Under certain coaditions amalgamation can take 
place, but is purely incidental, and is not the driving mechanism responsible for the 
growth of larger-scale structure. Similar large structure is observed downstream of 
porous flat plates (Re z 6000), which do not initially shed Kirman-type vortices into 
the wake. 

Measured prominent frequencies in the far cylinder wake are in good agreement 
with those estimated by two-dimensional locally parallel inviscid linear stability 
theory, when streamwise growth of wake width is taken into account. Finally, three- 
dimensionality in the far wake of a circular cylinder is briefly discussed and a 
mechanism for its development is suggested based on a secondary parametric 
instability of the subharmonic type. 

1. Introduction 
1.1. Historical overview 

Wakes generated by two-dimensional bluff bodies have been the focus of hundreds 
of experiments since the early 1900s. For a detailed review or bibliography of work 
on this subject, the reader is referred to Morkovin (1964) or Berger & Wille (1972). 
The majority of experimental efforts in the past have dealt primarily with near 
wakes (only a few diameters downstream). A more limited amount of work has been 
done on the far wakes of bluff bodies (up to  several hundred diameters), and that is 
the subject on which we wish to focus here. 

Let us consider the two-dimensional problem. It is well known from dimensional 
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analysis and simple scaling laws that a plane far wake grows as xi (see for example 
Cantwell 1979). We would expect therefore, as we go downstream in the wake, that 
the size of the largest-scale structure should increase, while its passage frequency 
should decrease, the convection velocity being approximately constant. This in fact 
has been experimentally verified. Taneda (1959), using flow visualization in the 
wakes of two-dimensional cylinders and flat plates, observed a far-wake structure 
which appeared to  be much like the original Karman vortex street, but of larger 
scale. He viewed the process as one of changing hydrodynamic stability, i.e. the 
original street decays (breaks down) and the wake ‘rearranges’ itself into a new 
configuration appropriate to the new (downstream) position. Taneda found that for 
laminar wakes (50 < Re < 150) the ratio of the secondary-vortex-street scale to that 
of the primary (Kkman)  street (a2/al)  varied from 1.5 to 3.5; for turbulent wakes 
this ratio was roughly 10, and the secondary street did not appear until much farther 
downstream, after the wake had had time to grow significantly. He also reported that 
this sequence sometimes repeated itself. 

Other investigators have also reported large-scale organized structure in the far 
wakes of bluff bodies. Grant (1  958) observed quasi-periodic large structures several 
hundred diameters downstream of his cylinder a t  Re = 1300, which he described as 
‘jets of turbulent fluid proceeding outward from the central plane of the wake’. 
Successive ‘jets ’ arise and decay, their overall size becoming larger with increasing 
downstream distance. 

Gerrard (1966) studied the downstream development of a cylinder wake a t  
Re = 113. At x / d  = 450 he found that the fundamental (Karman) frequency was lost 
in the background noise, but a lower-frequency fluctuation was found. The possibility 
of a secondary vortex street was suggested, the ratio of secondary to primary 
frequencies being about 0.033. 

Zdravkovich (1968) studied the development of the wake behind a set of three 
circular cylinders in close proximity. He found that the shed vortices rapidly decayed 
as they interacted with each other. Subsequently, a new vortex street of larger scale 
appeared downstream. Zdravkovich explained the formation of the secondary vortex 
street as a coupling of two mechanisms - shear-layer instability and a rolling-up 
process induced by the distributed vorticity in the wake. Similar experiments were 
done morc recently by Williamson (1985). 

An obvious extension of Zdravkovich’s work is to the wake of a cluster of many 
cylinders or, in the general case, the wake of a porous two-dimensional body, such as 
a screen or perforated flat plate aligned normal to the flow. Investigations of the 
latter have been reported by Castro (1971) and more recently by Valensi (1974). 
Castro categorized two distinct regimes of flow based on the solidity of the plate : (a )  
for high solidity (low porosity) a Karman vortex street dominates the near wake ; ( b )  
for low solidity (n. < 0.8) the plate does not shed Karman vortices, but there is a 
dominant frequency present, which he attributed to far-wake instability. Valensi 
examined the latter regime in more detail with a 53 % solid plate ; he shows power 
spectra and smoke pictures. The dominant near-wake frequency corresponds to 
instabilities in the shear layers on either side of the wake; further downstream 
(beyond five plate widths), the dominant frequency is associated with a vortex street 
which forms after the shear layers have merged. Smoke visualization confirms his 
hot-wire results. 

Another interesting set of experiments was reported by Durgin & Karlsson (1971). 
They subjected the cylinder wake to a deceleration, thereby distorting the KhrmBn 
vortex street. Their results show an annihilation of the concentrated vortices, and 
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the subsequent creation of a new vortex street of lower frequency and longer 
wavelength. They, like Taneda, attributed this effect to changing hydrodynamic 
stability. Although the non-decelerated wake of Taneda does not experience bending 
and stretching of vortex filaments, as does the decelerated wake, the similarity of the 
two results is remarkable. 

In a closely related experiment, Keffer (1965) used a constant-area distorting duct 
to impose a strain field upon the wake. His flow-visualization results show a 
secondary vortex-street-like structure emerging with a frequency 0.36 times the 
KBrman frequency a t  Re = 350. 

Interest in Taneda’s discovery has resurfaced in the past decade. Based on an 
inviscid model, Weihs (1973) suggested that multiple Kkmh-vortex-street  modes 
are possible. In  an attempt to compare his model with experiment, he plotted 
Taneda’s results and obtained the fit (for 60 < Re < 120) 

az=-  220 
a,  Re’ 

although there is considerable scatter in the data. Matsui & Okude (1980) made 
careful hot-wire measurements, a t  Reynolds numbers between 100 and 160, of the 
velocity fluctuations associated with this secondary-street phenomenon. They also 
reported an inverse Reynolds-number relation, but their constant was very different 

295 
a, Re’ 

from Taneda’s (equation 1.1)  : 
a Z = -  

Thus i t  seems that the development of the secondary vortex street is not independent 
of experimental facility. (Taneda’s cylinders were towed in a water channel, while 
Matsui & Okude used a low-speed wind tunnel.) 

Meanwhile Townsend (1979), using multiple hot-wire arrays, found periodic flow 
patterns resembling KarmAn vortex streets for a much higher Reynolds number 
(Re = 8000 a t  x/d = 170). ‘Groups’ of three to five vortical structures were observed, 
the passage frequency within a group being uniform but varying considerably from 
one group to the next. Regions of random fluctuations seem to fill the gaps between 
successive groups. Long-time-averaged spectra therefore do not show a peak a t  any 
particular frequency. Townsend estimated that these eddy groups contribute 
15-20 ‘30 of the total turbulent energy. Such grouping of structures had previously 
been suggested by Gupta, Laufer & Kaplan (1971) for the turbulent boundary 
layer. 

Matsui & Okude (1981) later abandoned Taneda’s original conjecture that the 
secondary street results from hydrodynamic instability, following the ‘breakdown ’ 
of the primary street. In  its stead they proposed that pairing is the mechanism for 
the change in scale. Matsui & Okude’s conclusion, however, was based partly on flow 
visualization, where the flow tracer was introduced upstream of the cylinder. As will 
be pointed out in $3, this type of visualization can be very misleading. Furthermore, 
with a pairing mechanism the frequency of the secondary street ought to  be half that  
of the primary street, but this is not the case for all Reynolds numbers. Matsui & 
Okude (1980) measured the frequencies of the primary and secondary streets. From 
their figure 10 one can calculate the ratio of these two frequencies; fa/fl ranges from 
0.2 to  0.52. 

At about the same time, Cimbala, Nagib & Roshko (1981) reported strong 
experimental evidence in support of Taneda’s stability hypothesis. Namely, they 
employed the smoke-wire flow-visualization technique of Corke et al. (1977) and hot- 
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wire anemometry to  show that concentrated vortices of the Karman vortex street 
decay exponentionally. As will be discussed in 93, the very rapid decay of the 
Karman vortex street has been known for quite some time (see for example Roshko 
1953) ; this fact has tended to be obscured, however, owing to misinterpretation of 
strcakline flow visualization. Cimbala et al. showed that by 100-150 diameters 
downstream of a cylinder a t  Re % 100 the initial vortex street can no longer be found. 
Thus they concluded that the development of any subsequent structure can not be 
directly dependent upon the original vortex street (i.e. amalgamation) but rather 
must be the result of a local wake instability of the developing mean velocity profile. 
Cimbala (1984) made hot-wire surveys of the developing wake ; comparison of linear 
stability calculations with measured prominent frequencies showed good agreement, 
which provided further support for this statement. Details of these experiments are 
reported in the present paper. 

Matsui & Okude (1983) again studied the wake a t  Re = 140. Using simultaneous 
hot-wire anemometry and smoke visualization a t  x/d = 75, they showed that the 
smoke lumps are indeed vortices a t  this location ; therefore they concluded, based on 
Row visualization of these lumps, that  pairing is the predominant mechanism for the 
change of scale. The frequency ratio f2/f, is not always exactly one-half because not 
all of the vortices pair up;  a few are left stranded, causing some irregularity. 
However, when Matsui & Okude acoustically excited the wake a t  6 or of the 
Karman frequency, they observed regular pairing or tripling, respectively. 

In  contrast to the conclusions of Matsui & Okude, Nagib & Desruelle (1982) and 
later Dcsruelle (1983) confirmed the findings of Cimbala et al. (1981) in a different 
flow facility. In  addition they used acoustic excitation to experimentally derive the 
stability characteristics of the wake. Namely, amplification rates are plotted as a 
function of disturbance frequency and of downstream location. As expected, the 
band of amplified frequencies shifts to lower values and broadens as downstream 
distance is increased. Also, a t  about the same time, Champagne, Marasli & 
Wygnanski (1982) and Wygnanski, Champagne & Marasli (1986) introduced 
disturbances a t  the trailing edge of a flat plate, and investigated spatial growth rate. 
They found that the turbulent-wake response corresponds surprisingly well to that 
calculated from linear stability theory applied to the mean flow and with its growth 
taken into account (Gaster, Kit & Wygnanski 1985). 

Several theoretical and numerical investigations of this matter have also been 
made; for example, see Weihs (1973), Aref & Siggia (1981), Schatzman (1981), 
Saffman & Schatzman (1982), and most recently Meiburg (1987). For the most part 
these niodcls are inviscid, two-dimensional, and assume an infinite array of vortices 
in temporal, rather than spatial development ; only the subharmonic instability has 
been given much attention, although Saffman & Schatzman discuss other 
possibilities. Robinson & Saffman (1982) investigated the three-dimensional stability 
of an initially two-dimensional row of staggered vortices. 

1.2. Objective 

For the case of a plane free shear layer, amalgamation of small vortices into larger 
ones appears to be an important feature of the growth of coherent structures (see for 
example Winant & Browand 1974). Such amalgamation occurs most frequently 
when the shear layer is locally receptive to scales close to the subharmonic of existing 
scales in the flow, i.e. subharmonic resonance. It is then a matter of semantics as to 
which mechanism is prominent - amalgamation or hydrodynamic instability. But to 
what extent amalgamation influences the scale of structure in a wake is of concern 
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here. As discussed above, there is some disagreement among researchers as to the 
mechanism(s) responsible for the large-scale structure observed in far wakes of two- 
dimensional bluff bodies. The two views are summarized here : 

( a )  Hydrodynamic instability of the wake profile is responsible for the growth of 
downstream structure, independent of and not directly resulting from amalgamation 
of vortices shed from the body (KarmLn vortex street). Amalgamation, if i t  occurs, 
is incidental and is not itself the primary mechanism for the change of scale. 

( b )  The large structure in the far wake is a result of amalgamation of KBrman 
vortices into larger vortical structures. 

Our overall objective, then, was to describe definitively the mechanism that causes 
the change of scale. The experimental tools we have employed toward this end are 
hot-wire anemometry and smoke-wire visualization. We are primarily concerned 
with the two-dimensional aspect of the problem ; three-dimensionality is discussed 
briefly. 

2. Experimental facility and instrumentation 
The flow-visualization experiments, as well as the hot-wire measurements, were 

conducted in an open-return, low-turbulence wind tunnel a t  the Guggenheim 
Aeronautical Laboratories of Caltech. The test section is 0.5 m square and 2 m long; 
flow velocity is variable from 0.5m/s to 12m/s, and background turbulence 
intensity U ' ~ , J V ~  of the free stream is 0.1-0.2 YO a t  U ,  = 2 m/s. 

The circular cylinders used in the experiments varied in diameter from 0.06 ern to 
0.5 cm, giving a Reynolds-number range from 70 to over 2000 (based on cylinder 
diameter, Re = U,d/v). The cylinders, made of drill rod, spanned the test section and 
passed through the walls at either end, where they were held in tension by fasteners 
outside the tunnel walls. Drill rod provided the required strength, uniformity of 
diameter, and smoothness. Before each run, the cylinder was polished carefully to 
remove any dust build-up or corrosion. 

In addition to circular cylinders, porous flat plates were also stretched across the 
test section, with their broad sides facing the flow. The plates were approximately 
2 cm in width and were cut from screens. (Reynolds number based on this width 
ranged from 3000 to 9000.) We looked a t  a number of porous plates of various 
solidities and mesh sizes, from which we picked one representative case for our 
smoke-visualization experiments and hot-wire measurements, namely a 47 % solidity 
screen with wire diameter 0.43 mm and mesh size 1.59 mm. The screen was held in 
tension by fasteners passing through the tunnel walls. 

A simple technique for introducing closely spaced streaklines in wind tunnels is 
called 'smoke-wire flow visualization, ' and is described by Corke et al. (1977). In  the 
present experiments, the smoke wire used for flow visualization was a 0.13 mm 
diameter stainless-steel wire which stretched from top to bottom of the test section 
through the tunnel walls. A strobe and camera were synchronized to the operation 
of the wire, allowing instantaneous snap-shots of smoke streaklines to be recorded. 
More details of our set-up can be found in Cimbala (1984). 

Free-stream velocities were measured with a United Sensors Pitot-static tube and 
an electronic Barocel manometer. Fluctuating velocities were measured with 
miniature single- and dual-sensor hot-wire probes (T.S.I. models 1260-T1.5 and 1248- 
T1.5, respectively). The single-sensor probe was a 4 pm platinum-plated tungsten 
wire, with a length of 1.5 mm ( L / d  = 375). It was mounted parallel to the 
longitudinal axis of the model and with the probe body oriented at  45" with respect 
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to the x-axis (direction of free stream). A 6 mm cylindrical strut supported the hot- 
wire assembly from the top; it was covered with an extruded aluminium airfoil- 
shaped tube to minimize vibration and disturbance. The entire assembly was 
mounted on an XIJ traverse which rested on top of the test section. The dual-sensor 
probe consisted of two wires in an ‘ X ’  configuration, each wire a t  45’ with respect 
to the free stream, but perpendicular to its neighbour. The wires were of the same 
diameter as that of the single-sensor probe described above. The dual-sensor probe 
was mounted parallel to the free stream such that the ‘X’  lay in the x-y plane. In  
this orientation u’ and d fluctuations could be measured in the usual manner. 
‘4 two-channel constant-temperature anemometer circuit was built in-house by 

D. Nosenchuck, S. Taylor & H. Robey of Caltech. Some modifications to the circuit 
were required to obtain a very high signal-to-noise ratio. I ts  output was analysed in 
one of two ways: ( a )  for single-sensor real-time spectral analysis an HP 35828 
spectrum analyser was used, along with an x-y plotter; (b)  for dual-sensor time-trace 
measurements, and for simultaneous hot-wire and smoke-wire measurements, a 
digital data-acquisition system was used. The anemometer output was sent to a 
signal conditioner which offset the d.c. component, amplified the signal to cover the 
full range of the 12-bit A/D converter (0-10 V), and applied a low-pass filter as an 
anti-aliasing precaution. An %bit microcomputer was used to sample and record the 
data digitally on to floppy disk. At a programmable time during sampling, the 
smoke-wire could be turned on, as well as the camera and strobe, in order to record 
simultaneous hot-wire data and smoke-wire photographs. The signal conditioner and 
relay unit were built by one of the authors (J. M. C.) ; the microcomputer was also 
built in-house by D. Nosenchuck, S. Taylor & H. Robey. 

The hot-wire data were subsequently analysed on GALCIT’s DEC YDP-11 
computer system. 

3. Flow-visualization results 
3.1. Integration ejfect of streaklinm 

Plow visualization, though a very useful tool in fluid-mechanics research, can often 
be misleading, as has been pointed out by Hooker (1936) and more recently by Hama 
(1962). The main problem with unsteady flows is that  streaklines are not equivalent 
to streamlines, even though they are sometimes confused as such. In  the laboratory, 
it is usually easier to generate streaklines than streamlines. The most common 
method of streakline visualization is the steady introduction of a flow tracer 
(typically dye or smoke) from a fixed location in the flow. For wakes this location is 
usually either upstream of the body, or on the surface of the body itself. But a dye 
or smoke filament is distorted as it travels downstream, and the streakline pattern 
seen at  some downstream location contains information integrated all the way back 
to its point of introduction. Thus, when studying a streakline one cannot be sure if 
( a )  the flow a t  a given location is currently experiencing the distortions implied by the 
streakline pattern, or (b)  that pattern is merely a remnant of the streakline’s past 
history (an integrated ‘memory’ as it were). Therefore, in order to visualize the true 
nature of the flow at  a given location, it is desirable to introduce the flow tracer close 
to that location. Traditionally the hydrogen-bubble technique in water has been 
useful because of its portability ; the smoke-wire technique in air is analogous and has 
been employed here. 

As a case in point consider the two-dimensional Karrnan vortex street in the wake 
of a circular cylinder a t  low Reynolds number. Figure 1 shows a series of photographs 
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FIGURE 1.  Circular-cylinder wake at Re = 90; smoke wire at (a )  z /d  = 4, ( b )  50, (e) 100 and 
( d )  150. 

taken a t  different times and at  progressively increasing downstream locations in the 
wake a t  Re = 90. The flow is from left to right, with the cylinder axis perpendicular 
to the plane of view. In  each case the smoke wire has been placed at the left-most 
edge of the field of view, and the photographs are aligned so that any vertical line 
passes through the same downstream location in all of the photographs. In  photo ( a )  
the smoke-wire is just downstream of the cylinder; the vortex street is clearly 
marked and remains visible to the downstream end of the photograph (x/d = 200). 
(The vertical white line a t  x/d z 150 is a rod supporting the smoke-wire assembly, 
and does not interfere with the flow - it is far out of the plane of smoke.) From ( a )  
alone one might conclude that the Karman vortex street is still active at  this 
downstream location. I n  ( b )  and ( c )  the smoke wire has been moved downstream to 
50 and 100 diameters, respectively. The vortices are seen to be much weaker for these 
smoke-wire positions than would appear from (a )  alone. In (d) the smoke wire is a t  
x/d = 150 and all the streaklines are parallel, which implies that the street a t  this 
location is so weak that it cannot be detected by the smoke-wire technique. This 
essentially parallel wake profile continues downstream with no further evidence of 
discrete vortices all the way to 350 diameters. 

The integration effect of streaklines, as described above, is clearly demonstrated 
by comparing the flow pattern observed at  x/d = 200 in each of the photographs in 
figure 1 ; the pattern is drastically different, depending on smoke-wire position. Photo 
( a )  shows what appears to be the Karman vortex street a t  x/d = 200; ( b )  and ( c )  show 
a similar structure but much weaker, while ( d )  indicates that no structure is present 
a t  this wake location. Which photo then can we trust! That is, how can we 
objectively describe the flow field from this confusing array of photographs ! It is our 
contention that in order to accurately discern the flow at  some location, the smoke- 
wire must be placed at  a proper distance upstream of that location. If i t  is placed too 
far upstream, the streaklines become very distorted and may lead us to erroneous 
conclusions. Likewise if it is placed too close to our observation point, the streaklines 
may not have had time to deform, again, causing confusion. 
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The clue to understanding this figure lies in the following: Suppose a streakline 
rolls up as it marks a vortex moving downstream. The resulting pattern will clearly 
indicate that vortex. Now suppose that the vortex, as it travels, decays a t  a much 
faster rate than the smoke diffuses. We can then argue that the smoke remains in its 
integrated pattern, even after the vorticity has largely diffused (leaving an extremely 
weak vortex). The streakline pattern is now fixed, and is simply convecting along 
with the mean flow, no longer changing its shape. This is exactly what we observe in 
(a) of figure 1 ; notice that beyond 100 diameters or so, the streakline pattern no 
longer changes significantly ~ i t  merely convects downstream. There is of course 
some shearing of the pattern, as the outside of the wake convects faster than the 
centre. This can be seen in (b)  as well as in (a)  of figure 1. Zdravkovich (1969) shows 
what he describes as extremely elongated elliptical vortices a t  x /d  z 600; his smoke 
was introduced a t  the cylinder, and therefore suffers the same integration effect as 
our photo (a) .  

Keeping these concepts in mind, we can now answer the questions posed above. 
Each photograph in the figure is useful only for a finite distance downstream of the 
smoke wire. To obtain an accurate description of the entire developing flow field, it 
is necessary to place the smoke wire a t  various positions, and then look a t  the collage 
of pictures as a whole. For example, the very rapid decay of the Karm6n vortex 
street is not clear from any one of the photographs in figure 1 ; but when the entire 
figure is studied simultaneously, the decay is quite evident. We should mention here 
that the smoke wire itself has a wake, but the Reynolds number based on wire 
diameter is only about seven. At Reynolds numbers below forty or so, the wake of 
the smoke wire is steady and only influences the flow immediately downstream. We 
therefore consider the smoke wire as essentially non-intrusive. 

At this point the reader may be questioning the validity of the above argument for 
air flow, where the ratio of viscous to molecular diffusivity (Schmidt number) is of 
order unity. One might argue that as a structure in the flow is dissipated by viscosity 
the smoke particles are diffused at  nearly the same rate and smoke should not remain 
in a pattern for any longer time than the lifetime of the structure generating that 
pattern. A simple explanation concerning this apparent dilemma is as follows : Smoke 
in air is actually composed of tiny aerosol-type particles, whose mass is significantly 
greater than the mass of surrounding air molecules. Hence diffusion of these particles 
is extremely slow on a molecular scale; we may then define an 'effective Schmidt 
number ' which is orders of magnitude larger than that for air alone. Lapple (1961) has 
calculated the diffusion coefficient D of particulate matter into air a t  25 "C. For oil 
smokes, particle size is approximately 0.2 pm, which gives a diffusion coefficient of 
about 2 x 1 0 P  cm2/s. In air, v % 0.16 cm2/s; our effective Schmidt number v / D  is 
thus of order lo5. That the diffusion of smoke is indeed slow is clearly seen in figure 
1;  if one follows a single streakline in the free stream outside of the wake, no 
significant dispersion of that streakline is observed (i.e. it does not broaden as it 
travels downstream). 

3.2. Decay of the Kurman vortex street 
As discussed above, an observation immediately apparent from figure 1 is the very 
rapid decay of the Karman vortex street. This decay was found to occur a t  all the 
Reynolds numbers we investigated. In  each case, when the smoke wire is placed far 
enough downstream of the cylinder, the shed vortices can no longer be found. 
Furthermore, the location of their disappearance seems to move upstream with 
Reynolds number. For Re = 90 it occurs a t  about 125-150 diameters. For Re = 155, 
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where the wake is just on the vcrge of transition to turbulent flow, the Karmhn 
vortex street cannot be visualized beyond 75-100 diameters. (Of course, in this case 
a secondary wake structure is rapidly developing at  this downstream location, as will 
be discussed in the following section.) For transitional and turbulent wakes 
(Re > 160) the vortices are dissipated much more rapidly, and are not seen beyond 
x/d = 50. 

The rapid decay of the Karman vortex street has been known for quite some time. 
For example Roshko (1953) found that, for Re = 50 and 100, the energy intensity of 
the Karman vortices is so low beyond 100 diameters that background tunnel 
turbulence becomes significant. For Reynolds numbers in the ‘irregular ’ range 
(150 < Re < 300), the decay is even more pronounced. For turbulent wakes Roshko’s 
results are again supported by the present experiments, where KBrman vortices 
could not be seen beyond 50 diameters. Nevertheless, it seems that the full 
implication of this observed decay, particularly for laminar vortex streets, has not 
been appreciated owing to misinterpretation of streakline photographs. For example, 
Zdravkovich (1969) shows what appear to be very elongated Karmkn vortices a t  
xld = 600 ! I n  the light of our experience and the above discussion of streakline 
integration effects, these must be merely the integrated pattern from far upstream. 
Tritton (1977) states that ‘ . . .the vortex street continues to all distances 
downstream,’ again a misinterpretation of streakline patterns ; in fact, the Kdrmdn 
vortex street has completely decayed by a t  most one or two hundred diameters. 
Indeed, based on this rapid decay, the rows of vortices should perhaps not be called 
a ‘street’ a t  all (the original term having implied a long, regularly spaced pattern). 
In 94 we take a quantitative look at  this decay, using hot-wire anemometry. 

3.3. The secondary vortex ‘street’ 
Because we are able to mount smoke wires a t  any desired position, the smoke-wire 
technique is convenient for studying development of downstream structure in a 
wake. In  particular, placement of a smoke wire a t  positions beyond which the 
Karman vortex street has largely decayed yields some interesting results. For 
Reynolds numbers less than about 100 we do not observe any further reorgznization 
or development of large structure in the far wake. Figure 1 shows a typical case 
(Re = 90). Notice that beyond x/d = 150, the streaklines in (d )  are parellel, with no 
apparent regions of concentrated vorticity. For these low-Reynolds-number wakes, 
large secondary structure could not be seen as far downstream as we investigated, 
which was about 500 diameters (not shown in figure 1). 

For 100 < Re < 160, a structure apparently similar to that of the Kirnian vortex 
street, but of larger scale, is observed beyond a hundred diameters. Two cases in this 
Reynolds-number range are shown in figures 2 and 3, a t  Re = 130 and 155 
respectively. The photos are aligned in the same way as described for figure 1. The 
‘strength’ of the secondary street may be inferred from how quickly the streaklines 
deform. From these photographs and others, we observe that the strength increases 
with Reynolds number in the range 100 < Re < 160. (For example, the secondary 
structure in figure 3 at  Re = 155 is stronger than that a t  Re = 130 in figure 2.) The 
scale of this structure is roughly 2-3 times that of the primary Karman street and 
az/al  decreases with increasing Re in this same range ; az/al  x 2.3 for Re = 130, while 
aJa, = 2.1 for Re = 150. Figure 3 shows some of the strongest and most regular 
secondary structure that we have recorded on film. Photos ( b )  and (c) represent 
identical tunnel conditions, but were taken about 10 s apart. Both are included here 
to illustrate that the secondary structure is not a steady phenomenon -its 
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FIGURE 2. Circular-cylinder wake at Re = 130; smoke wire a t  (a )  x/d = 8, (b)  150 and (c) 200. 

FIGURE 3. Circular-cylinder wake at Re = 155; smoke wire at  (a )  x/d = 8, ( b )  100, (c) 100 and 
( d )  200. 

appearance varies with time. Photo ( b )  shows an irregular secondary street; this is 
a more typical case than ( c ) ,  where an unusually regular and strong street has been 
captured. Because the photographs shown here were not taken simultaneously, 
inconsistencies in the strength of the downstream structure may appear in collages 
like figures 2 and 3. Three-dimensionality may play an important role in determining 
how regular the downstream structure appears in these edge views. Three- 
dimensionality is discussed briefly in $ 5 .  

For Re > 160 the wake becomes irregular and eventually turbulent, making the 
interpretation of flow visualization extremely difficult. Taneda (1959) reported 



Far wakes of two-dimensional bluff bodies 275 

FIGURE 4. Circular-cylinder wake at Re = 2200; smoke wire at (a) x/d = 1 and (b) 160. 

FIGURE 5. Porous-flat-plate wake at Re = 6000, u = 47% smoke wire at (a) x/d = 0 and (b) 44. 

seeing a secondary street a t  high Reynolds number, but only after several hundred 
diameters. Matsui & Okude (1980) could not find any such street for Re > 160, 
although they had not looked as far downstream as had Taneda. I n  the present 
experiments we did not find a well-organized, easily recognizable secondary ‘street ’ 
for Re > 160. However, ‘groups’ or ‘bursts’ of large vortical structures could 
sometimes be observed, similar to those observed by Grant (1958) and Townsend 
(1 979). Figure 4, for example, shows a cylinder wake a t  Re = 2200. Notice that after 
the Karman street decays, the wake becomes very disorganized. However, beyond 
x/d x 200, (photo b)  we notice a somewhat regular antisymmetric structure, of a 
scale much larger than the original Karman street. The structure is most visible in 
the lower part of the wake a t  x/d x 250, where aJa l  is about 5. 

3.4. Porous-$at -plate wakes 
It is important to note than in all the above cases, secondary structure emerges after 
the primary (Karman) street has largely decayed. The secondary structure therefore 
appears to develop independently; for example its scale (or frequency) is not 
necessarily in a fixed ratio to that of the primary street. This observation suggests 
that the secondary structure results from an instability of the mean wake profile. It 
therefore seems reasonable to assume that if one can produce a wake which initially 
has no Karman vortex street, a street-like structure may emerge downstream owing 
to wake instability. Such a wake can be produced by a porous flat plate aligned 
normal to the flow direction, provided the solidity cr is lower than about 80 Yn (Castro 
1971). 

Smoke-wire photographs are shown in figure 5 for a plate with solidity cr = 47 Yn 
a t  a Reynolds number of 6000. The solidity is low enough that the plate does not shed 
Karman-type vortices. The wake immediately downstream contains only small-scale 
structure, and has a ‘top-hat’ velocity profile in the mean. We do notice, however, 
a fairly regular vortex-street pattern a t  xld x 30, presumably caused by far-wake 
instability. Let us re-emphasize here that the two photographs in figure 5 arc not 
simultaneous, and therefore not necessarily consistent. It appears that photo ( a )  
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was taken during a period of more intense structure than was (b ) .  It is likely that the 
initiation of the instability also fluctuates in the streamwise direction ; the structure 
in (a) may have been initiated further upstream than that in (b ) .  At conditions 
similar to ours, Castro (1971) observed a dominant frequency in the wake, which he 
also attributed to hydrodynamic instability of the mean velocity profile. Valensi 
(1974) shows a similar photograph for a plate with (r = 53% a t  Re = 5 x lo4. Hot- 
wire measurements for the flow in figure 5 are discussed in $4. 

4. Hot-wire measurements 
4.1. Exponential decay of the Kdrmdn vortex street 

Smoke-wire flow visualization of the far wakes of bluff bodies has given us new 
qualitative insight into Taneda’s phenomenon of vortex-street breakdown and 
rearrangement. We now present the results of hot-wire measurements which give us 
quantitative information about this process. To obtain single-point velocity 
measurements in the wake, we used a ‘ cross- ’ or ‘X-  ’ wire, along with a digital data- 
acquisition system. The calibration procedure and details of the data acquisition are 
described by Cimbala (1984). Data were recorded a t  thirty-two y-locations for each 
of twelve streamwise positions in the wakes of circular cylinders a t  Re = 140, 150 and 
500. Mean streamwise velocity profiles for the case Re = 500 are shown in figure 6. 
The least-square Gaussian fit to the velocity profiles is quite good beyond xld = 100, 
after the Karman street has largely decayed ; this has been shown more clearly by 
Desruelle (1983). Wake widths used in calculations in the following sections were 
taken from the Gaussian fits; for locations upstream of x/d = 100 these give slightly 
smaller values for half-velocity width than indicated by the measured profiles. 

First, let us consider the decay of the Karman vortex street as downstream 
distance is increased. As had been pointed out by Bevilaqua (1975), velocity 
fluctuations due to a vortex street are more readily detected in the cross-wake (v) 
velocity component. Hence, let us consider amplitude spectra of the v‘ fluctuations, 
where v = V + v’. (An amplitude spectrum is the square root of a power spectrum ; 
the units are in per cent of free-stream velocity). For a circular cylinder wake a t  
Be = 150 and a t  x/d = 25 (our nearest measuring station), a delta-function spike is 
seen a t  the shedding frequency f k ,  which is the only significant frequency in the near 
wake. Proper characterization of changes in fluctuation magnitude with down- 
stream distance is possible only when similar transverse locations in the wake are 
compared. For consistency, amplitude spectra were calculated a t  each x-location, 
averaged a t  the two y-locations corresponding to  inflexion points in the mean 
velocity profile (one on either side of the wake). Because the inflexion point should 
be near the point of maximum mean shear, fluctuations in the transverse directions 
(9‘) are expected to be highest near that  point. Discrete spectral amplitude a t  f = f k  
is plotted against downstream distance xld in figurc 7 for Re = 140 and 150. For 
both Reynolds numbers, the amplitude is seen to decay exponentially for 
25 < x/d < 150. By least-squares fitting a straight line through the first 6 or 7 data 
points in figure 7 ,  we obtain initial decay rates of 0.0246 decades per diameter for 
Re = 150, and 0.0249 decades per diameter for Re = 140. Similar decay rates have 
been reported for the u’ fluctuations by other investigators. Hussain & Ramjee 
(1976) obtained hot-wire traces of u’ at Re = 145 for various downstream distances. 
From their figure 4, the amplitude of the fluctuations can be seen to decay 
exponentially in the region 5 < x/d < 60. In  our earlier work (Cimbala et al. 1981) a t  
Re = 155, wc measured discrete u’ fluctuations a t  the shedding frequency, and found 
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Decay rate 
Reference Velocity Re (decade/diameter) 

Desruelle (1 983) U' 80 0.0143 
Desruelle (1983) U' 120 0.0169 
Present results U' 140 0.0817 
Present results v' 140 0.0249 
Matsui & Okude (1981) U' 140 0.0170 
Hussain & Ramjee (1976) U' 145 0.0156 
Present results uf 150 0.0209 
Present results 0' 150 0.0246 
Desruelle (1983) U /  155 0.0225 
Cimbala et al. (1981) U' 156 0.0167 
Present results U' 500 0.0284 
Present results 0) 500 0.0305 

TABLE 1. Decay rates for velocity fluctuations measured by various investigators. 
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FIGURE 7 .  Exponential decay of Karman vortex street ; circular-cylinder wake at Re = 140 (0) 
and 150 (A). 

u’,,, to decay exponentially up to 100 diameters. Matsui & Okude (1981) made 
similar measurements a t  Re = 140, while Desruelle (1983) showed an exponential 
decay for three different Reynolds numbers. The decay rates for all these cases are 
summarized in table 1. 

The general trend is for faster decay rates with increasing Reynolds number. This 
is especially apparent when we only consider data from one facility (e.g. the three 
rates of Desruelle, or our present results). There is some scatter in the data from 
different facilities ; the decay rate is probably sensitive to background disturbances 
in the free stream. Since. as discussed in what follows, wc believe that wake 
instability, even a t  Reynolds numbers as low as lo2, is primarily inviscid, this effect 
of Re seems puzzling a t  first. The explanation, we believe, is that the effect is an 
indirect one, the role of Re being mainly to change the initial wake conditions, 
through its effect on the separation point and the boundary-layer thickness, and thus 
on the wake profile. 

4.2. Downstream structure 

As downstream distance in the wake is increased. fluctuations appear at frequencies 
lower than the shedding frequency. Figure 8 shows amplitude spectra a t  several 
downstream positions for Re = 150. Again the spectra are averaged over the two 
y-locations where the slope of the mean velocity profile is a maximum (inflexion 
points). We observe in figure 8 a shift to lower frequencies as xld is increased. In  
particular, the Karmkn frequency { f k  x 166 Hz) is initially the only significant 
frequency. represented here by a delta function. The spectral amplitude measured a t  
xld = 25 for example is several hundred, but decays exponentially as shown in figure 
7 .  At xld = 100 in figure 8 a broad band of frequencies has arisen with the most 
prominent peak a t  f x 90 Hz, and other peaks a t  f x 120, 83 and 70 Hz. By 
xld = 200, disturbances at  f NN 90 and 70 Hz have amplified significantly, as well as 
the subharmonic (.f = 83 Hz) ; the peaks at  f = fk = 166 Hz and a t  f = 120 Hz havc 
tlccaj7ed. With further increase in x ld ,  the band of prominent disturbances shifts to 
lower frequencies and broadens. At  xld = 400 the most prominent band of frequencies 
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FIGCRE 9. Growth and decay of selected discrete frequencies; circular-cylinder wake a t  Re = 150. 

is centred around 70 Hz, while all frequencies above 100 Hz have disappeared. By 
x/d = 750, there are no longer any outstanding spikes; instead, a very broad hump is 
seen for 0 < f < 75 Hz. In  general, following the life cycle of a particular frequency, 
we notice that the fluctuation amplitude a t  that frequency first rises, then decays; 
the lower the frequency, the further downstream is its life cycle. In  figure 9 we have 
plotted spectral amplitudes at several discrete frequencies versus downstream 
distance. The growth-decay cycle is clear. 

Notice in figure 9 that  there is nothing outstanding about the subharmonic, 
f = 83 Hz. That is to say, disturbances at the subharmonic experience the same kind 
of growth and decay as at any other nearby frequency. For example, the growth- 
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decay cycle a t  f z 90 Hz leads the one a t  the subharmonic by about 20 diameters, but 
is almost identical in magnitude and shape. 

Figure 10 shows amplitude spectra a t  a cylinder Reynolds number of 500, where 
the wake is turbulent. In  this case there are no spectral peaks other than the one a t  
the shedding frequency ; instead a broad hump is discernible, which shifts to lower 
frequencies much more smoothly than for the laminar case above. The spectral 
amplitude of v’/U, decays with downstream distance for all frequencies ; i.e. we do not 
really see regions of growth, but rather decay, a t  each discrete frequency in these 
coordinates. In the spectra of figure 10 v’ is divided by the local mean velocity defect 
A U ,  where AU = U,-U, = U,W,, instead of by U,. Frequency may also be 
normalized in the usual manner; i.e. 

2nSf 
P = . m ,  

where f is the dimensional frequency, and S is the wake half-width, defined by the 
y-location where U *  = 0.5; U* is the normalized mean velocity, 

and U ,  is the mean centreline velocity, U ,  and the wake half-width 6 are calculated 
by fitting a Gaussian profile to the measured mean streamwise velocities. In  figure 11 
we show normalized spectra a t  all twelve downstreams positions. These spectra show 
a self-similar behaviour beyond about 100 diameters. The centre of the spectral peak 
in these coordinates occurs a t  approximately P =  1.5. The band of prominent 
frequencies is very wide, much more so than for the case of a plane mixing layer ; 
namely AP/P, z 0.7 and 2.0 respectively where AP is the bandwidth a t  half the 
amplitude of the peak value a t  p,,. This is most likely due to the slower growth of 
wakes compared with mixing layers, which have growth rates dS/dx = i S / x  and 
S/x  respectively. The slower divergence of the wake permits a longer period in which 
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FIGURE 1 1 .  Normalized amplitude spectra at several downstream distances ; circular-cylinder 
wake at Re = 500. 

unstable disturbances may grow. In the next section, we compare these results with 
predictions of linear stability theory. 

4.3. Comparison with linear stability theory 
Inviscid linear stability of a parallel wake profile has been analysed by many 
investigators, both in the temporal and spatial modes. Our intent here is to  compare 
predictions from these analyses with our experiment results. Namely, for the 
measured mean velocity profiles, how well can linear theory predict which frequencies 
are most prominent in the wake ? 

For comparison with experiment, spatial stability analysis is preferred over 
temporal analysis, as has been pointed out by Mattingly & Criminale (1972). 
T. Kubota, ( 1983, private communication) has generated numerical solutions for 
both cases ; inviscid disturbances are superposed on a parallel Gaussian wake profile, 
details of which can be found in Cimbala (1984). Figure 12 shows spatial growth rate 
g as a function of dimensionless frequency p, and for several values of W,, the 
normalized centreline velocity defect in the wake (W,  = 1 - U,/U,). Recall that for 
spatial stability analysis, frequency p is real, while wavenumber a may be complex. 
The family of curves shown in figure 12 are for the temporal mode, where a is real 
and p may be complex. We, however, plot spatial growth rate g, using the 
transformation of Gaster (1965). The important thing to note in the figure is the 
dependence of the growth curve on W,. As we travel downstream in the wake, W ,  
decreases, and the relevant growth curve is continually shifting toward higher b, 
as well as decaying in magnitude. For the case of a plane mixing layer, the velocity 
difference is constant, and there is only one growth curve, rather than a family of 
curves as in figure 12. 

T. Kubota (1983, private communication) has argued that the growth curves 
shown in figure 12 may be extended to negative growth (de-amplification) beyond 
the neutral point, p,. This is extremely important in the following analysis, where 
such a de-amplification region is required in order to predict growth-decay cycles of 
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velocity deficit. 

large-scale structures. For lack of details in this region, we have extrapolated the 
curves in figure I2 by straight lines, whose slopes are matched with those a t  the 
neutral points. This extrapolation is obviously not entirely accurate, but reason- 
able; the predictions that follow would be affected somewhat by an alternate 
extrapolation. 

Let us consider which prominent frequency fp we expect to find in our 
measurements; i.e. we wish to  predict f p  as a function of downstream distance x. At 
first glance one may expect f p  to equal the locally most-amplified frequency (the peak 
in the growth curve). This turns out not to be the case however, owing to non- 
parallelism of the mean wake. It must be remembered that the growth rates shown 
in figure 12 are calculated for a parallel wake (no x-dependence); the real wake of 
course is not parallel, but widens downstream. Obviously the best predictions would 
come from fully non-parallel stability analysis, where one takes downstream 
widening of the mean wake into account ; nevertheless we expect the curves in figure 
12 to be adequate approximations locally. Hence, a scheme was developed to  
approximate non-parallelism (x-dependence) using only parallel stability calcu- 
lations. Namely, in order to  predict how large a disturbance to expect a t  some 
particular frequency, we integrate growth rate a t  that  frequency with respect to 
downstream distance x. Doing this for a number of frequencies gives us disturbance 
amplitude as a function of frequency for each downstream distance. It is then a 
simple matter to find that frequency predicted to  be the most prominent, f p ,  as a 
function of x (i.e. the frequency whose amplitude is greatest a t  a given x-location). 
This locally parallel scheme is described in more detail by Cimbala (1984). 

Starting conditions for the locally parallel approximation are crucial, and 
unfortunately not easily chosen objectively. As mentioned previously, the velocity 
profiles upstream of about 100 diameters are not truly Gaussian, so the stability 
calculations of figure 12 do not strictly apply. We must start our integration 
upstream of this region, however, since there will be amplification of disturbances. 
The following simplifications have been applied ; ( a )  an initially flat spectrum 
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(constant amplitude a t  all frequencies) is assumed; ( b )  the growth rates of figure 12 
are used, with W,(X) and S(x) determined by least-squares Gaussian fits of the 
measured mean velocity profiles ; (c) integration is started a t  x l d  = 10, where W, and 
6 are extrapolated from farther downstream (our first measurement station is a t  
x l d  = 25) .  Changes in any of these assumptions can change the predictions 
considerably. The reader should be aware that these calculations are only 
approximate since the actual wake is unsteady, non-Gaussian, non-parallel, three- 
dimensional, and viscous. Our prediction scheme, based on inviscid, two-dimensional 
parallel stability of purely Gaussian wake profiles, should be considered a first 
attempt until more rigorous analysis is performed. 

These predictions, which we are about to compare with the experiments, are based 
on two-dimensional, linearized theory. Within the linearized restrictions, this would 
not be affected by the presence of a three-dimensional (spanwise) linearized 
instability, even if the latter were comparable in strength with the two-dimensional 
one. We point this out because of what might seem an inconsistency in the 
application of two-dimensional results to the far wake where, as we shall see, the 
structure tends to be strongly three-dimensional. 

Let us now compare our experimental results a t  Re = 150 with predictions of 
inviscid linear stability theory. We show in figure 13 a plot of frequency versus xld. 
The circles represent experimental frequencies ip at which the most prominent 
disturbances were measured. The vertical lines represent 70 % confidence levels (as 
defined in figure 8) ,  and give an idea of the bandwidth of prominent frequencies. 
These observed fp should be compared to the predicted f p  as calculated with the 
locally parallel scheme ~ given here as the solid line. Also shown in figure 13 are 
the locally-neutral frequency (dashed line), and the frequency corresponding to 
the locally-most-amplified disturbance (dotted line). Note also that, because of the 
integration, the frequency that is locally most amplified is not necessarily the 
frequency with the largest (integrated) amplitude. 

Close to the cylinder, the Karmtin frequency ( f ,  = 166 Hz, Strouhal number 
St = 0.175) is the most prominent observed frequency, as expected. I n  the very near 

10 FLJ1 l9(l 
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wake, where the amplitude of fluctuations can exceed 30%, comparison with 
linearized theory is not appropriate (Nishioka & Sato 1978). Note that the Karman 
vortices are initially formed by a mechanism much different from far-wake 
instability. The mechanism consists of a complex combination of unsteady boundary- 
layer separation and near-wake instability, involving also the body, and is not yet 
completely understood. We therefore do not expect , fk  to match our predictions. 
Indeed, it is interesting in figure 13 that the Khrmbn frequency is well above our 
predicted prominent frequency. In  fact, f k  even lies above the locally neutral 
frequency fn ,  and is thus in the region of damping, according to stability theory. This 
is consistent with our observation that fluctuations a t  Karman frequency fk decay 
exponentially in the region 25 < x/d < 125. This has also been verified in excitation 
experiments by Desruelle (1983). 

As discussed above, several assumptions about initial conditions were necessary to 
obtain the predictions shown in figure 13. Changes in any of these assumptions would 
have an effect on f,. For example, starting the integration a t  a different x-location 
has the effect of moving the prediction curve fp up or down, but the general trend of 
the curve remains the same. Because the near wake (xld < 100) still contains large 
fluctuation amplitudes a t  the shedding frequency, the predictions in this region are 
not reliable. For this reason, a broken line on thcf, curve is used to show extra- 
polation upstream of the region of validity to the point of initiation at  10 diameters. 
(The region of validity begins a t  x/d z 100, beyond which the initial Karmin 
vortex street has largely decayed.) Figure 13 illustrates that after disturbances a t  
f k  decay, lower frequencies take over; in the region of validity (beyond x/d = loo), 
the agreement between predicted and observed frequencies is quite good. 

What figure 13 suggests is that  a prominent frequency stays constant until locally 
neutral conditions arc reached, then drops to the predicted curve and again stays 
constant up to locally neutral conditions. The point at x/d = 750 may be anomalous. 
For Re = 150, such frequency plateaux seem consistent with the pictures. For 
Re = 500 the continuously shifting spcctrum suggests that the situation is much 
more volatile; i.e. a t  a given position x a continuously changing history of scales is 
observed. It is significant to note that the maximum value of the broad spectrum of 
figure 11 occurs near /3 = 1.5, which is close to the neutral stability point for the far- 
wake profiles, as shown in figure 12. 

At Reynolds numbers above about 160, the character of the wake changes 
considerably; by Re = 500 i t  is ‘fully turbulent’. Figure 14 shows the comparison 
between theory and experiment for the case of a turbulent cylinder wake a t  
K P  = 500. Here fk is approximately 630 Hz and is off the scale. In  this case f k  is 
prominent only in the very near wake. Already by xld = 50, a lower-frequency band 
(centred around fp z 290 Hz) is prominent. The observed fp decreases quite smoothly 
with x as we travel downstream. 90 YO confidence levels have been chosen as defined 
in figure 10 ; the band of prominent frequencies is very broad. For this turbulent case, 
our observed fp lies above the predicted fp;  in fact, it  follows more closely the locally 
neutral frequency f,, This indicates that the initial conditions assumed in the locally 
parallel approximation as described above, may not be as appropriate for this case. 
(The initial conditions here are consistent with those assumed for the laminar case.) 
There are several differences between the turbulent and the laminar wake which 
should be considered in choosing initial conditions. ( a )  There are more disturbances 
available in the turbulent near wake - our assumption of an initially flat spectrum 
may not be adequate. ( 6 )  Integration should be started immediately downstream of 
the cylinder, rather than a t  x/d = 10. This would have the effect of shifting our 
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prediction curve upwards. However, extrapolations to this region would be extremely 
unreliable and were not attempted. (c) The shed Karmin vortices in the case of the 
turbulent wake decay more quickly, allowing other modes to develop earlier - again 
the effect would be an upward shift of fp. ( d )  Finally, small-scale three-dimensional 
fluctuations are present in the turbulent wake, which may affect stability; our 
calculations are strictly two-dimensional. The unsteady nature of the near-wake 
region dominated by the shed Kirman vortices must be kept in mind in interpreting 
these estimates based on linear stability theory of a steady velocity profile. 

Figure 14 indicates that for quick and practical estimates, one may use the locally 
neutral curve to predict prominent frequencies in a turbulent far wake. We may 
point out here that similar results have been reported recently by Wygnanski et al. 
(1986) for the case of a plane turbulent wake a t  Re = 4000; namely, the observed 
prominent frequency matches well with the neutrally amplified frequency, as 
predicted by local linear stability theory. Ho & Huerre (1984) have observed this 
agreement for the case of a plane turbulent mixing layer as well. These observations 
are related to Lessen's marginal stability model, which actually makes a somewhat 
different statement (Lessen & Singh 1974). 

It is encouraging (and somewhat surprising !) that such a simple prediction scheme 
as employed here works as well as it does, considering that the actual flow is 
nonlinear, unsteady, non-parallel, and (as will be discussed below) three-dimensional. 
Furthermore, the presence of large-scale vortices indicates that the disturbances 
never really see the time-averaged profile upon which our stability analysis is based. 
Nevertheless, for reasons not entirely understood, we may conclude from this 
exercise that two-dimensional inviscid parallel hydrodynamic stability theory, when 
interpreted properly, is adequate to estimate the most-probable frequencies in a far 
wake. Furthermore, this supports the hypothesis that structure appearing far 
downstream of a bluff body is the result of hydrodynamic instability of the velocity 
profile, and is not directly dependent on the shed vortices of the Karman vortex 
street. 
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FIGURE 15. Simultaneous smoke-wire and cross-wire records, circular-cylinder wake at Re = 150; 
smoke-wire at x/d = 275, cross-wire at x / d  = 400, y / d  = 4. 

4.4. Simultaneous smoke-wire and cross-wire records 

The microprocessor was programmed so that a smoke-wire photograph could be 
taken a t  any specified time during the data-collection interval. This enabled us to 
display smoke-wire and hot-wire records simultaneously ; an example is shown in 
figure 15 for a cylinder wake a t  Re = 150. The smoke-wire is a t  x /d  = 275, while the 
cross-wire is positioned a t  x/d = 400 and a t  y/d = -4. Note that in order to avoid 
damage to the hot wires, the cross-wire assembly was moved about 1 cm (z 8 
diameters) out of the plane of smoke. For comparison, a t  x/d = 425 the vortex 
spacing is about 13 diameters. The time trace in figure 15 has been displayed 
‘backwards’ (i.e. time increasing to  the left), so that direct comparison between the 
flow-visualization photograph and time trace is possible. Thc scales have been 
matched according to 

t = -  

where U ,  is the local convection velocity (assumed to be the mean velocity a t  the 
location of the probe). In  this example, d = 0.0016 m, U ,  = 1.528 m/s and 
U ,  = 1.397 m/s. The time axis has also been shifted so that the strobe flash occurs a t  
t = 0. 

Because of the integration effect of streaklines, as discussed in $3,  we do not expect 
the time trace to exactly match the distortions of streaklines in the photograph. 
Nevertheless, a general agreement is certainly present. Notice for example the group 
of orderly structures a t  -60 < t < 0 ;  large-scale vortices are clearly seen in the 
photograph a t  400 < x /d  < 460. Just  ahead of the probe (350 < x/d < 390) there 
appears in the photograph a group of smaller-scale vortices. This is also recognizable 
in the time trace as a very weak higher-frequency oscillation. Short-time spectra of 
the fluctuations shown in figure 15 give frequencies of 64 Hz for the larger-scale 
structure, and 84 Hz for the smaller-scale structure. Both of these frequencies are 

(4.3) 
X 

Uc’ 
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FIGURE 16. Mean velocity profiles for porous flat-plate wake; cr = 47 %, Re = 5000; d = 1.78 cm, 
U ,  = 4.54 m/s. 

within the range of amplified frequencies, according to linear stability theory, as can 
be seen in figure 13 at x /d  = 400. 

Both the time trace and smoke-wire photograph of figure 15 support Townsend’s 
suggestion that far-wake structure appears as groups of several vortices ; this is 
consistent with the hypothesis that downstream structure develops from wake 
instability of the mean velocity profile and not directly from vortex amalgamation. 

4.5. Surveys of porous-$at-plate wakes 
Cross-wire surveys were also taken in the wake of a 47% solid flat plate a t  
Red = 5000, where d is the width of the plate. Mean velocity profiles are shown in 
figure 16. As expected, very near to the plate the profile is a sharp ‘top hat’  which 
gradually relaxes as the shear layers on either side of the wake begin to merge. By 
ten diameters the profiles are far-wake-like, and have been Gaussian fitted here. 

Amplitude spectra of d / U m  are plotted in figure 17 for several x-locations; each 
spectrum is averaged at  the two inflexion points of the mean velocity profile, as 
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FIGURE 17.  Amplitude spectra at several downstream distances; porous-flat-plate wake (a = 47 %) 
at Re = 5000. 

discussed previously. At xld = 1, spectral energy at low frequencies is small, but 
there is a noticeable bump centered around 410Hz. Recall from our flow- 
visualization results that the plate does not appear to shed K&rm&n-type vortices; 
the peak in the spectrum is associated with instabilities in the plane shear layers 
which exist initially on the outer edges of the wake. We can calculate the local 
Strouhal number of one of these shear layers; 

where O,, is the shear-layer integral thickness, 

and 0 is the average of U ,  and U 2 .  At xld = 1 we have U ,  = 2.39 m/s, U ,  = 4.54 
m/s, and O,, = 0.0507 em, calculated from the data in figure 16. For f = 410 Hz, 
equation (4.4) gives St = 0.06, which is consistent with the observations of Ho & 
Huerre (1984) for a growing free shear layer, that is Xt = 0.032 when the shear layer 
first begins to oscillate, and St = 0.079 further downstream as the shear layer grows. 
Our value lies between these two extremes, which supports our speculation that the 
peak a t  f = 410 Hz is associated with the shear layers on either side of the wake, and 
not with KBrmin-vortex shedding. Recall that flow-visualization photographs also 
do not show a shed vortex street (figure 5). 

At four diameters downstream the amplitude spectrum is devoid of any 
outstanding peaks ; a very broad band is centred a t  approximately 150 Hz and the 
peak a t  410 Hz has disappeared. We shall designate the range 4 < x/d < 10 as 
a transition range, where the stability problem changes from that of two 
(independent 1 )  plane shear layers to that of a plane far wake. 

At xld = 10 the spectrum has increased in magnitude a t  the lower frequencies, and 
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FIGURE 18. Prominent frequency versus downstream distance; porous-flat-plate wake (u = 47 YO) 
at Re = 5000. 

in particular there is a broad hump centred around 75 Hz. Beyond 10 diameters, in 
the ‘far-wake ’ region, the peak in the spectrum shifts to lower frequencies (larger 
scales) as downstream distance increases. 

Figure 18 shows a comparison between observed and estimated prominent 
frequencies f, ; the predicted values come from locally parallel stability analysis, as 
discussed above. Here, the wake is Gaussian-like beyond about 10 diameters. The 
integration was started with a flat spectrum a t  x/d = 4, using extrapolated values of 
W ,  and 8, in the manner described in $4.3 for the case of a circular-cylinder wake. 
Again, changes in the initial conditions would move our prediction curve up or down 
within the bounds of fn and f, respectively, but the general trend would he retained. 
The agreement in figure 18 is quite good beyond xld = 10, in the far-wake region. 
75% confidence levels are also plotted in figure 18 to indicate the bandwidth of 
prominent frequencies. The significance of these porous-plate data is this : 
hydrodynamic instability in a far wake leads to the growth of downstream structure, 
the scale of which is determined by local wake properties; the far-wake structure is 
not dependent on the scale of shed Karman vortices - which for the case of a porous 
plate do not even exist. 

5. Three-dimensional effects 
Up to this point our discussion has been confined to the x- plane; now let us 

consider three-dimensionality. The earliest experiments on far-wake structure are 
those of Townsend (1956) and of Grant (1958). Grant’s work, an extension of 
Townsend’s, consists of long-time-averagcd velocity correlations in the far wake 
(z 500 diameters) of a two-dimensional cylinder at R e  = 1300. A peculiar three- 
dimensional structure was inferred from these time-averaged measurements, and was 
dubbed the ‘vortex-pair eddy’, later called the ‘double-roller eddy ’ by Townsend 
(1970). More detailed calculations by Payne & Lumley (1967) of Grant’s data yielded 
a similar structure. 



290 J .  M .  Cimbala, H .  M .  Nagib and A .  Roshko 

(4 (b)  (C) 

x/d = 0 S O  100 1 so 200 250 300 350 400 

FIGURE 19. Edge and plan views of a circular-cylinder wake a t  Re = 140; smoke wire a t  
(a )  x/d = 8, ( b )  100 and (c) 200, and a t  y / d  = 0. 

Since that time, neither the instantaneous nature of this structure nor its origin 
have been adequately explained, although there has bcen some speculation (see for 
example, Keffer 1965; Townsend 1970, 1979; Roshko 1976). Roshko (1976) suggested 
that the structure may be the time-averaged superposition of vortex loops, formed 
by the pinching off and joining together of vortices from opposite sides of the street. 
That long-time averaging seriously distorts one’s interpretation of the instantaneous 
structure was also mentioned by Townsend (1979). He suggested that time averaging 
of the large-scale velocity patterns ‘makes them appear more complex because of the 
superposition of patterns from eddies a t  all stages of.. . [his proposed] growth-decay- 
renewal cycle’. An excellent discussion of some of these ideas is offered by Wlezien 
(1981). 

Most recently Mumford (1983), using a pattern-recognition technique, suggests 
that the double-roller eddies may be even more complex than previously thought. He 
found that the structures are often confined to one side of the wake centreplane, 
rather than extending across the entire wake. Furthermore, eddies of similar type 
tend to occur in groups of two or more, one after another in the streamwise 
direction. 

Whatever the exact nature of the far-wake large structure, various indications 
suggest that it is three-dimensional. To investigate this visually, the smoke-wire 
flow-visualization set-up was modified for plan views by aligning the cylinder parallel 
to the smoke wire. Figure 19 shows both edge (x-y plane) and plan (x-z plane) views 
of the cylinder wake a t  Re = 140. (The two views were recorded for the same tunnel 
conditions, though not simultaneously.) The edge view illustrates the decay of the 
Ksirman vortex street and the subsequent growth of secondary structure. The smoke 
wire was positioned at  x/d = 8, 100 and 200 in the manner discussed previously. 

For the plan view, the smoke wire was at the same three x-positions as above, but 
at y / d  = 0 (i.e. in the centre plane of the wake), and parallel to the cylinder. In  photo 
( a )  one immediately notices the skewed angle a t  which vortices are shed from the 
body. The reason for this is not entirely clear, but similar observations have been 
reported by many others (see for example Tritton 1959 ; Gerrard 1966 ; Nishioka & 
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FIGURE 20. Plan view of a circular-cylinder wake at Re = 150; smoke-wire at xld = 100, y / d  = 2. 

Sato 1978). Our own experiments indicate the slantwise shedding to be quasi-stable; 
i.e. vortices are sometimes shed parallel, sometimes slanted one way, and other times 
the opposite way. Subtle non-uniformities of the free stream, end conditions, or the 
body itself are the most likely candidates for triggering transitions between the three 
‘ modes ’. Cimbala (1984) shows an unusual case where vortices are shed slantwise at  
two opposing angles a t  different parts of the span with an ‘elbow ’ in between. Similar 
behaviour and its sensitivity to upstream and cylinder conditions was noted by 
Desruelle (1983). His experience indicates that slantwise shedding from a slightly 
inclined cylinder leads to more laterally uniform Karm6n vortices. 

I n  figure 19 the shed vortices are parallel to each other, with no appreciable 
spanwise structure. After the decay of the primary street however, three- 
dimensionality is seen in the secondary structure beyond 100 diameters (photos b and 
c ) .  Lateral non-uniformities in the near wake may well act as disturbances in the 
development of these far-wake three-dimensional structures as noted by Desruelle 
(1983). The honeycomb-like pattern also is skewed in these photographs; but, just as 
with the shed vortices, the skewness comes and goes. The size of the cells is 
approximately 20 cylinder diameters. Our interpretation of the pattern in the plan 
view photograph ( c )  is that  it depicts only one side of the wake. This interpretation 
is based on additional evidence like that presented in figure 20. 

What exactly is this structure! What is the mechanism by which it develops! 
How, if a t  all, does it relate to Grant’s ‘vortex-pair eddy’? 

Figure 20 provides additional information for a conjecture on the answers to these 
questions. For R e  = 150, with the smoke wire a t  x/d = 100, we see the gradual 
formation of three-dimensional structure. By moving the smoke wire out of the wake 
centreplane ( y /d  = 2) we are able to visualize vortex lines from just one side of the 
secondary street. In  this particular case, the vortices are initially straight and 
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FIGURE 21. Edge and plan views of a circular-cylinder wake at. Re = 190; smoke wire a t  
(a )  x/d = 8, (b )  100 and (e) 200, and at y / d  = 0. 

parallel. A waviness quickly develops, with successive vortices 180’ out of phase. The 
amplitude of this perturbation grows downstream, eventually to where one vortex 
overlaps the next. This can most readily be seen in the upper right-hand corner of the 
photograph, where hairpin-line vortices, not unlike those observed in the transition 
process of boundary layers (see c.g. Saric & Thomas 1984), are developed. Presumably 
the other side of the street has a similar experience. 

Long-time-averaged correlations of such loops could be interpreted as Grant’s 
‘ vortex-pair eddies ’, that  is, the Townsend-Grant large-scale structures are the legs 
of the hairpin vortices on each side of the wake. This description is consistent with 
Mumford’s (1983) findings. Some evidence that vortex loops can exist in a wake was 
provided by Breidenthal ( 1980) who used a three-dimensionally perturbed splitter 
plate in a shear-layer facility to produce the loops, which persisted for large 
downstream distances. 

Our observations, therefore, suggest that  this three-dimensional structure is a 
result of a secondary instability based on the interaction of spanwise oblique (and 
non-uniform) disturbances with the two-dimensional periodic vorticity structures of 
the far-wake instability. This secondary instability is in the form of a parametric 
subharmonic resonance similar to that analysed by Pierrehumbert & Widnall (1982) 
in free shear layers and more extensively for boundary layers and channel flows by 
Herbert (1983, 1984). In fact the symmetric profile of the Poiseuille flow (Herbert 
1983) is the closest to the conditions in the wake. 

For higher Reynolds numbers, where the wake becomes turbulent, smoke 
visualization is encumbered by small-scale structure. In  figure 21 however, a t  
Re = 190, one can still recognize wavy structures similar to those in the laminar 
wake. 
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6. Discussion and conclusions 
6.1. Decay of the Kdrmdn vortex street 

We found smoke-wire flow visualization to be very effective, as well as easy to use, 
in the study of wakes of bluff bodies. We must emphasize, however, that  extreme 
caution should be taken when interpreting streakline patterns in flows with any type 
of unsteadiness. I n  particular, when the classical case of a Karmin vortex street is 
visualized by placement of smoke wires a t  several downstream locations, the 
confusing integration effect of streaklines becomes immediately apparent. The 
conclusion to be drawn is that in an unsteady flow it is best to introduce flow tracers 
a t  not just one, but several positions in the flow. Only by studying a collage of 
photographs arranged in the manner described in this paper can one be confident of 
not being misled by the integration effect of streaklines. 

It has been shown, with flow visualization and again with hot-wire measurements, 
that the Karman vortex street shed in the wake of a circular cylinder does not persist 
indefinitely, but rather decays exponentially with downstream distance. In the 
present experiments, the decay is so rapid that fluctuating velocity measurements a t  
the Karman frequency are lost in background ‘noise’ by 100 to 150 diameters a t  
Re = 150. The decay is even faster for turbulent wakes where small-scale structure 
is prevalent. 

Such rapid decay is by no means a new revelation ; however its importance has not 
been realized up to now because of the misinterpretafion of streakline flow 
visualization. Reasons for the decay are (a)  viscous diffusion, and ( b )  de-amplification 
in the sense of hydrodynamic stability. Numerical streakline simulations of Cimbala 
(1984) included only the first of these, i.e. viscosity. The decay rate inferred from 
these simulations is not as rapid as that for the experimental case of figure 1 ; this 
shows that viscous diffusion is not the only mechanism of decay. Desruelle (1983) 
shows evidence that the second mechanism, hydrodynamic deamplification, accounts 
for a t  most 77 YO of the vortex-street decay rate. Other possibilities contributing to 
the decay include ( c )  cancellation of vorticity from opposite sides of the street, and 
(d )  that the Karman vortices may be located differently with respect to the centreline 
than a regular eigenfunction. This final point was suggested by Desruelle, where he 
shows that as 6 increases with x ,  the lateral spacing b between Karman vortices does 
not ‘keep up ’ ; K&rmbn vortices that initially sit on the edge of the wake move closer 
to its centre as the wake grows. More detailed studies of this phenomenon and its 
effect on the decay of a vortex street have not been attempted to date. 

6.2. Development of donwstream structure 
As the wake widens with downstream distance, the scale of large structures must also 
increase. The mechanism by which this is accomplished is hydrodynamic instability 
of the developing wake profile. Frequencies are select,ively amplified and then 
damped, according to the local growth rates, as determined by the local wake profile. 
Observed prominent frequencies agree fairly well with estimates of locally parallel 
inviscid linear stability theory, provided that streamwise growth of the wake is taken 
into account. 

For unsteady laminar wakes, 100 < Re < 160, the distribution of frequencies that 
are prominent broadens with downstream distance. The structure appears as groups 
of several vortices, separated by regions of random fluctuations; the frequency (or 
scale) of vortices within a group is constant, while it can vary considerably from 
group to group. Such a pattern agrees intuitively with what one expects in a 
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hydrodynamically unstable system. As a disturbance grows i t  convects downstream 
until it is no longer amplified, but damped. Meanwhile, in somewhat random fashion, 
disturbances a t  other frequencies are amplified, perhaps originating a t  different 
x-positions, and go through similar life cycles. 

The above scenario is appropriate for turbulent as well as laminar wakes. In the 
turbulent case, additional complications arise because of small-scale (three- 
dimensional) turbulent structure. Townsend (1966) proposes his equilibrium 
hypothesis as a mechanism for the growth-decay cycles of large structures, namely, 
large eddies develop during a period of quiescence, when the turbulence intensity is 
low. The large eddies grow in strength and cause rapid entrainment, which leads to  
an increase of turbulence intensity a t  all scales. Turbulent motion of smaller scales 
resists the growth of large eddies by absorbing some of their energy. The large eddies 
therefore decay, and another period of quiescence begins. Further downstream, 
wherc the wake is wider, larger-scale (lower-frequency) structure emerges, and the 
cycle recurs. Our results are not inconsistent with Townsend’s equilibrium 
hypothesis. We stress in addition the important role of local hydrodynamic stability 
in the growth and decay of large structures. 

Let us now address the phenomenon of vortex amalgamation. As discussed in $ 1 ,  
there has been some difference in view as to the role of vortex pairing in the 
changeover to largcr-scale structure in wakes. There are proposals that pairing 
instability is paramount in this changeover. It is our contention however that vortex 
amalgamation is not necessary for the growth of larger structure; but rather, 
hydrodynamic instability of the developing velocity profile results in the selective 
amplification of frequencies which are locally unstable. If amalgamation does occur 
it is purely incidental, not the driving mechanism of the flow. For our circular- 
cylinder wakes a t  Re = 150 and 500, vortex pairing was not observed. Furthermore, 
we found nothing outstanding about the subharmonic frequency of the shed Karman 
vortex street. That is to say, disturbances at the subharmonic do not experience a 
different history of growth and decay than other nearby frequencies. Wakes of 
porous flat plates provide further evidence that vortex amalgamation is not an 
essential mechanism for wake development. Here wake instability alone establishes 
a street-like structure well downstream of the body, from which no vortices have 
been ‘shed’. 

A plot of a2/al (ratio of secondary-street scale to that of the primary street) versus 
Reynolds number, as shown for example by Matsui & Okude (1980), has a great 
amount of scatter, particularly among different flow facilities. Furthermore, aJal  is 
exactly equal to  two only for isolated cases. Hydrodynamic stability theory and its 
receptivity to facility-dominated disturbances adequately explains the scatter. As 
indicated by figure 12, the wake a t  a given location is unstable to  a broad band of 
frequencies. If there exist relatively large background disturbances at specific 
frequencies within this band, these will most likely be the ones selected to amplify. 
It is then clear why such facility-dependency exists. Moreover, bccausc a broad band 
of scales is amplified in the wake, arid because thc band of amplified frcqucncies 
shifts to lower values with increasing x, a2 cannot be defined unambiguously ; a plot 
of a2/a1 is thus of little use, perhaps even misleading. 

How then to explain the observations of Matsui & Okude (1981) whose smokc- 
visualized pictures show examples of pairing of vortices on each side of the wake, 
e.g. starting a t  about 100 diameters downstream for Re = 140? Based on our 
observations, we must conclude that in fact it is only the residual smoke patterns of 
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the primary vortex street that are being amalgamated into the new instability and 
its resulting vortices. 

It has been pointed out to us recently (Meiburg 1987) that the peaks in our velocity 
spectra are almost all multiples of some very low frequency. For example, in the w’ 
velocity spectrum a t  Re = 150 and x/d = 100 (see figure 8), many of the peaks are 
exact multiples of a frequency fk/lO. At Re = 140 (not shown here), where the effect 
is even more pronounced, Meiburg’s figure 22 reveals that almost every spectral peak 
is an integral multiple of fk/23. Meiburg performed inviscid calculations on an infinite 
array of vortices in a vortex-street pattern ; namely, he applied a subharmonic 
perturbation to the two sides, He observed the appearance of a low frequency and 
its multiples, quite similar to our experimental spectra. Meiburg then argues that 
vortex pairing can occur with the subharmonic frequency playing a dominant role in 
the spectrum. 

In fact, the initial vortices decay so rapidly that to model them by a periodic array 
is questionable. Meiburg’s analysis is consistent with the general concept of the 
introduction of frequency into the spectrum by phase jitter. Such phase jitter may 
also be introduced by free-stream disturbances or three-dimensionality. These low 
frequencies would be selected for amplification by the changing instability window 
of the growing wake. Either scenario does not imply or require ‘pairing’ as the 
fundamental mechanism. The change in the character of the spectrum from Re = 150 
to Re = 500 is striking. A t  Re = 500 we have seen in figures 10 and 11 that the 
spectrum is broad and smooth, and shifts continuously to lower frequencies with 
increasing S(x). (This type of spectrum occurs first a t  Re = 300 (Roshko 1953).) 

6.3. Comparisons with the plane mixing layer 

A theme of this paper is that, as the wake develops, its large-scale structure (as 
measured by the streamwise spacing of vortices) increases in response to  the stability 
characteristics of the thickening wake. It is of interest, therefore, to attempt 
comparison with the development of the plane mixing layer, for which the 
corresponding ideas have been discussed for some time (Ho & Huerre 1984). Some 
authors emphasize the instability with respect to the mean profile, while others 
proceed from the stability of vortex arrays. These sometimes lead to controversial 
views of the processes. 

In  the case of the mixing layer it does appear that amalgamation processes are 
more vigorous than in the wake, that the developments proceed faster in some sense. 
This may be related to the different underlying growth laws: d8/dx x S/x for the 
mixing layer but only gS/x for the wake. In  the slower-growing wake the 
growth-decay cycles may be more prominent, more separated in scale, than in the 
mixing layer. 

Possibly the most important differences between the mixing layer and the wake 
are that :  (u) in the former the mean (two-dimensional) vorticity is all of one sign, 
while in the latter the vorticity is of opposite signs on the two sides of the wake; ( b )  
the local characteristic Reynolds number of the wake remains essentially constant 
for the wake, while it increases continuously with downstream distance in the shear 
layer. The possibilities for vortex interactions, instabilities and structure are richer, 
more complex and have more time to develop in the wake. One result, apparently, 
is that the large organized structures are quasi-two-dimensional (spanwise organized) 
in the mixing layer but basically three-dimensional in the wake. This difference is 
illustrated in the experiment of Breidenthal (1980) who added a spanwise 
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perturbation to a splitter plate to introduce three-dimensional disturbances into 
wakes and mixing layers. Three-dimensional, loop-like structure remained in the 
wake for large distances downstream ; on the other hand the mixing layer reorganized 
itself into predominantly two-dimensional structure. This tendency toward three- 
dimensionality in wakes complicates any possible amalgamation processes. Our 
observations under laminar conditions suggest a mechanism for developing these 
three-dimensionalities from a secondary parametric instability of the subharmonic- 
typc acting on the far-wake initially two-dimensional structures. Such mechansims 
may remain operative under turbulent wake conditions leading to the Grant- 
Townsend vortex-pair eddies. 
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