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1. (40 pts) Prepare a “lecture” on the Kelvin-Helmholtz instability. In other words, pretend you are a professor, and you 

need to teach this material to your “class.” To teach effectively, you must first learn and understand the material yourself! 
This involves going through the algebra, making sure you understand each step along the way. Use any references you can 
find. For example, Kundu’s book has a section about this as do other books in the library or perhaps on the Internet. Don’t 
be concerned about how long your lecture is; rather, prepare enough so that you understand this instability, and how you 
might explain it to your students. Follow the linear stability analysis procedure outlined in class. The basic idea of this 
homework problem is that you learn more about this well-known instability, since we will not have time to cover it in detail 
in class. Also, many of you will end up being faculty members after graduation, and this assignment gives you some 
experience in preparing a (graduate level) lecture.  

 
 
 
 
 
 
 
2. (20 pts) In this problem, we fill in some of the gaps in our analysis of the Bénard problem. First, the Boussinesq equations 

were written as the set of differential equations to consider (step 0). Next, the basic state equations and the basic state were 
found (step 1). Here, you will fill in some of the algebra, and analyze the basic state temperature and pressure fields in detail. 
(a) Integrate the energy equation, using appropriate boundary conditions, to verify the expression for ( )T z  given in class. 

Express your equation in terms of Γ, where Γ = ∆T/d. 
(b) The basic state pressure field is hydrostatic, but not exactly linear since density varies from the top to the bottom of the 

domain. Find an exact expression for P(z) (exact within the limitations of the Boussinesq approximation). Note: Assume 
boundary condition P = P0 at the lower wall. 

(c) Plot a comparison of the actual (exact) P(z) with the linear P(z) one would get assuming constant density, and provide a 
physical explanation for your result. For consistency let the fluid be a liquid with the following properties, constants, 
and boundary conditions: ρ0 = 1000 kg/m3, α = 2.70×10-3 1/K, T0 = 280oC, ∆T = 60oC, g = 9.807 m/s2, d = 0.002 m, 
and P0 = 0 Pa (this will make P like a gage pressure with the reference pressure being zero at the bottom wall). 
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3. (40 pts) In this problem you will simulate the Bénard instability problem using computational fluid dynamics (CFD). 
There are three goals for this exercise:  

 

(1) To get some experience using CFD (for some of you this may be your first exposure to running a CFD code).  
(2) To see whether CFD can predict results that are similar to the analytical solution derived in class.  
(3) To increase your understanding about flow instabilities and how they form. 

 

You may use any CFD code you want. Three free ones are available for students in our class:  
 

• STAR CCM+. A free student license for STAR-CCM+ is available for students in our class to download onto their own 
computers. Instructions are provided in a separate file, posted on the ME 522 Canvas website, due to security reasons. A 
STAR-CCM+ video tutorial by Chris Penny is also available for this HW assignment: Benard_Cells.mp4 . 

• ANSYS Workbench (FLUENT and CFX). This software is available on the MNE PCStudio computers. Also, a free 
student version of ANSYS Workbench is available for students to download onto their own computers. Instructions are 
at http://www.ansys.com/student. Note that you must use your psu.edu email to prove you are a student. Also, make 
sure you follow the installation directions carefully. [Warning: Installation is more cumbersome than most software that 
you download because of the licensing, but it should work if you follow the directions carefully.] An ANSYS 
Workbench video tutorial by Skylar Schirtzinger (a former TA for this course) is are also available: 
o Part 1: https://youtu.be/oXwNIL0NBDo  
o Part 2: https://youtu.be/IUcPRifgrKc   

Professor Cimbala also has a typed tutorial for older versions of FLUENT. Although some commands have changed, 
the overall flow of the instructions is still valid. See 
http://www.mne.psu.edu/cimbala/Learning/Fluent/fluent_Benard_problem.pdf .  

• OpenFoam. This is open source software that is available free to anyone. However, unless you have used it before, the 
learning curve is probably too steep to learn in time for this homework. 

 

  Truncation and round-off errors are typically sufficient as small disturbances that grow as the CFD solution tries to 
converge, acting very similar to a real experiment.  

 
 Details: Consider two parallel walls at distance d apart, with fluid in between. The top wall is colder by some amount ∆T. 

Following the class notes, all reference fluid properties are evaluated at the bottom wall. In the analytical solution, the walls 
were infinite in extent. However, in the CFD solution, the computational domain is bounded at either end; the end conditions 
influence the geometry of the convection cells, much like in a real physical experiment. In this problem, the ends are periodic 
(the mesh at the left edge must exactly match that at the right edge). The computational domain of each student will have a 
unique aspect ratio so that end effects can be studied.  
• The computational domain for this problem is very simple – just a rectangle, as sketched below. 
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• As sketched, x is the horizontal direction and y is the vertical direction. Gravity acts downward (negative y direction). 
• The bottom wall is hotter than the top wall, so that a thermal instability is possible, depending on the Rayleigh number. 

The bottom wall is held at fixed temperature T0 = 60oC. The top wall temperature is determined by the Rayleigh 
number. 

• For all cases the gap height d between the two walls is set to 2.00 mm (0.00200 m). However, domain length, L varies 
with each student. Each student is assigned a different aspect ratio for his/her computational domain, where aspect 
ratio is defined as AR = L/d, according to the following table [I purposely avoided integer values of AR]:  
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PSU Login name Assigned AR = L/d Calculated λ/d 
sja198@psu.edu 4.1  
agc86@psu.edu 4.4  
src347@psu.edu 4.5  

exc5257@psu.edu 4.8  
smc303@psu.edu 4.9  
tmc5478@psu.edu 5.1  
mrc453@psu.edu 5.4  
mje32@psu.edu 5.5  

kmh774@psu.edu 5.8  
iph3@psu.edu 5.9  

auh1002@psu.edu 6.1  
xuh128@psu.edu 6.5  
nuh98@psu.edu 6.9  
nxj190@psu.edu 7.1  
rtj10@psu.edu 7.5  

ajr545@psu.edu 7.9  
acs5213@psu.edu 8.1  
dxs5610@psu.edu 8.5  
rus284@psu.edu 8.9  
cms685@psu.edu 9.1  
yzs220@psu.edu 9.5  
jxs2469@psu.edu 9.9  
emv53@psu.edu 10.1  
auw317@psu.edu 10.5  
ctw39@psu.edu 10.9  
djw68@psu.edu 11.1  
ajw324@psu.edu 11.5  
phw13@psu.edu 11.9  
hzx25@psu.edu 12.1  
jry40@psu.edu 12.3  

 
(a) Generate an equation for ∆T as a function of thermal conductivity k, viscosity µ, density ρ, specific heat cp, gravitational 

constant g, thermal expansion coefficient α, gap height d, and Rayleigh number Ra. For the fluid you choose for your 
CFD analysis, calculate the ∆T required to achieve Ra = 5,000. Note: Make sure the units all cancel correctly! 

(b) Using your assigned aspect ratio for the computational domain, generate the grid, and run the CFD code at Ra = 5000. 
Do Bénard cells form? Attach an image showing visualization of your cells. 

(c) Measure average cell wavelength λ/d and compare with theory. Hint: The easiest way to measure λ is to divide the 
length of your domain by the number of cell pairs (not individual cells since two cells make a wavelength). Do your 
results agree with theory? Discuss. 

(d) In the above table, fill in λ/d for your assigned aspect ratio, and turn this in as part of this assignment. [In a future HW 
assignment, we will collect all these into Excel and plot them to see if there are any trends.] 
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