Blasius-secondary flow flat plate boundary layer similarity solution

J. M. Cimbala

The equations to solve are \(f'' + cff'' = 0 \), where prime denotes \(d/d\eta \), and \(h'' + 0.5fh' - f + 1 - (f')^2 = 0 \).

Here, let \(c = 1/2 \), following Kundu's book. \(c := 0.5 \)

The boundary conditions are \(f(0)=1 \), \(f(\infty)=1 \), \(f'(\infty)=1 \), \(h(0)=0 \), and \(h(\infty)=0 \).

Since two of these are at infinity, \(f'(0) \) and \(h'(0) \) need to be guessed until the boundary conditions at infinity are satisfied.

First define a vector \(Y \) which contains five unknowns, \(Y_1 = f' \), \(Y_2 = f' \), \(Y_3 = f \), \(Y_4 = h' \), and \(Y_5 = h \).

ORIGIN := 1

<table>
<thead>
<tr>
<th>Known boundary conditions:</th>
<th>Guessed boundary conditions:</th>
</tr>
</thead>
</table>
| \(Y_2 := 0 \) \(Y_3 := 0 \) \(Y_5 := 0 \) | \(Y_1 := 0.332057 \) \(Y_4 := 1.085973166 \)

Verify the vector:

\[
Y = \begin{pmatrix}
0.33206 \\
0 \\
0 \\
1.08597 \\
0
\end{pmatrix}
\]

Now define the derivative vector \(D \) which contains the first derivative with respect to \(\eta \) of each variable in the \(Y \) vector. This derivative vector \(D \) is needed for the Runge-Kutta solution.

Now calculate the solution as \(\eta \) marches from \(\eta_{\text{start}} \) to \(\eta_{\text{end}} \). Here \(Z \) is the solution matrix, where the first column is \(\eta \), the second column is \(Y_1 \), the third column is \(Y_2 \), the fourth column is \(Y_3 \), the fifth column is \(Y_4 \), and the last column is \(Y_5 \).

Here the function \(\text{Rkadapt} \) is used, which is similar to \(\text{rkfixed} \) except it internally uses adaptable spacing instead of fixed spacing (more accuracy where needed). It reports at fixed spacing however.

\(\eta_{\text{start}} := 0 \) \(\eta_{\text{end}} := 10 \) \(\text{num_steps} := 2000 \) \(Z := \text{Rkadapt}(Y, \eta_{\text{start}}, \eta_{\text{end}}, \text{num_steps}, D) \)

Top portion of \(Z \):

\[
Z = \begin{pmatrix}
1 & 0 & 0.33206 & 0 & 0 & 1.08597 & 0 \\
2 & 5 \cdot 10^{-3} & 0.33206 & 1.66028 \cdot 10^{-3} & 4.15071 \cdot 10^{-6} & 1.08097 & 5.41737 \cdot 10^{-3} \\
3 & 0.01 & 0.33206 & 3.32057 \cdot 10^{-3} & 1.66028 \cdot 10^{-5} & 1.07597 & 0.01081 \\
4 & 0.015 & 0.33206 & 4.98085 \cdot 10^{-3} & 3.73564 \cdot 10^{-5} & 1.07097 & 0.01618 \\
5 & 0.02 & 0.33206 & 6.64114 \cdot 10^{-3} & 6.64114 \cdot 10^{-5} & 1.06597 & 0.02152 \\
6 & 0.025 & 0.33206 & 8.30142 \cdot 10^{-3} & 1.03768 \cdot 10^{-4} & 1.06098 & 0.02684 \\
7 & 0.03 & 0.33206 & 9.96171 \cdot 10^{-3} & 1.49426 \cdot 10^{-4} & 1.05598 & 0.03213 \\
8 & 0.035 & 0.33206 & 0.01162 & 2.03385 \cdot 10^{-4} & 1.05098 & 0.0374 \\
9 & 0.04 & 0.33206 & 0.01328 & 2.65646 \cdot 10^{-4} & 1.04598 & 0.04264 \\
10 & 0.045 & 0.33206 & 0.01494 & 3.36208 \cdot 10^{-4} & 1.04098 & 0.04786
\end{pmatrix}
\]
Bottom portion of Z (to verify BCs):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>9.95</td>
<td>1.03781×10^{-8}</td>
<td></td>
<td>1</td>
<td>8.22921</td>
<td>-2.12027×10^{-9}</td>
</tr>
<tr>
<td>99</td>
<td>9.955</td>
<td>1.01667×10^{-8}</td>
<td></td>
<td>1</td>
<td>8.23421</td>
<td>-1.69195×10^{-9}</td>
</tr>
<tr>
<td>99</td>
<td>9.96</td>
<td>9.95948×10^{-9}</td>
<td></td>
<td>1</td>
<td>8.23921</td>
<td>-1.27186×10^{-9}</td>
</tr>
<tr>
<td>99</td>
<td>9.965</td>
<td>9.75637×10^{-9}</td>
<td></td>
<td>1</td>
<td>8.24421</td>
<td>3.59864×10^{-10}</td>
</tr>
<tr>
<td>99</td>
<td>9.97</td>
<td>9.55729×10^{-9}</td>
<td></td>
<td>1</td>
<td>8.24921</td>
<td>-4.558×10^{-10}</td>
</tr>
<tr>
<td>99</td>
<td>9.975</td>
<td>9.36215×10^{-9}</td>
<td></td>
<td>1</td>
<td>8.25421</td>
<td>3.95158×10^{-11}</td>
</tr>
<tr>
<td>99</td>
<td>9.98</td>
<td>9.17088×10^{-9}</td>
<td></td>
<td>1</td>
<td>8.25921</td>
<td>3.29137×10^{-10}</td>
</tr>
<tr>
<td>99</td>
<td>9.985</td>
<td>8.9834×10^{-9}</td>
<td></td>
<td>1</td>
<td>8.26421</td>
<td>3.10305×10^{-10}</td>
</tr>
<tr>
<td>99</td>
<td>9.99</td>
<td>8.79965×10^{-9}</td>
<td></td>
<td>1</td>
<td>8.26921</td>
<td>1.08413×10^{-9}</td>
</tr>
<tr>
<td>000</td>
<td>9.995</td>
<td>8.61955×10^{-9}</td>
<td></td>
<td>1</td>
<td>8.27421</td>
<td>1.45076×10^{-9}</td>
</tr>
<tr>
<td>000</td>
<td>10</td>
<td>8.44303×10^{-9}</td>
<td></td>
<td>1</td>
<td>8.27921</td>
<td>1.81033×10^{-9}</td>
</tr>
</tbody>
</table>

Now generate a plot of the similarity variables:

```plaintext
 n := 1 .. num_steps
```

Blasius BL with Secondary Flow

![Blasius BL with Secondary Flow plot](attachment:plot.png)