Today, we will:

- Continue to discuss the centrifugal instability (Taylor instability)
- Begin a discussion about stability of locally parallel flows – the Orr-Sommerfeld Eq.
3) Inner cyl. rotating, outer cyl. stationary

\[r_A \omega_{A} \neq r_0 \omega_0 \]
\[r_A < r_0 \]
\[\text{But } \omega_{A} > \omega_0 \]

Potentially unstable

Define a Taylor number

\[\overline{Ta} = 2 \left(\frac{V_1 d}{\nu} \right)^2 \frac{1}{R_i} \]

\[V_1 = \pi \cdot R \cdot \omega \]
\[d = R_2 - R_1 \text{ = gap thickness} \]

That is a critical \(Ta \) for which flow is unstable

\[\text{Bénard} \]
\[\lambda = 2d \]

\[\text{Taylor} \]
\[\lambda = 2d \]

See Kundu for details
D. Stability of locally parallel flows (Kundu - sec. 12.8)

1. Intro: Some flows are parallel e.g. fully developed channel flow, Couette flow, etc.

Other flows are nearly parallel e.g. thin BLs, thin vortices, etc.

Approx. the basic state as \(\mathbf{U} = (U(y), 0, 0) \) \(V \) and \(W \) are very small compared to \(U \)

Locally Parallel Flow Approximation \(\to U \approx \) inc. of \(x \)

(local analysis only)

Advantage: Simpler mathematical model.

We can examine temporal stability with the method of normal modes.
2. **Linear Stability Analysis**

Step 0: set of eqs. - Use NSE: no gravity

Notation
- \(\tilde{u}_i \): Total velocity
- \(\tilde{u}_i \): Dimensional \(i \) component

\[
\text{Cont} \quad \frac{\partial \tilde{u}_i}{\partial x_i} = 0 \quad \text{4 eqs, 4 unknowns} \tag{1.2}
\]

\[
\text{Mom} \quad \frac{\partial \tilde{u}_i}{\partial t} + \tilde{u}_j \frac{\partial \tilde{u}_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 \tilde{u}_i}{\partial x_i^2} \tag{2.1}
\]

Non-dimensionalize everything

Let \(L = \text{characteristic length scale} \rightarrow X_i = \frac{x_i}{L} \)

\(U_0 = \) velocity

\(\tilde{u}_i = \) \(\frac{\tilde{u}_i}{U_0} \)

\(\frac{L}{U_0} = \) time

\(\frac{p U_0^2}{\rho} = \) pressure

\(\tilde{p} = \) \(\frac{\tilde{p}}{\rho U_0^2} \)
Step 1 Basic State \[\vec{U} = (U(x), 0, 0) \]

\[p_{beam} = P \]

Plug into eqs (1a) & (1b) \[\rightarrow \text{get (1b) i.e. (2b) on handout} \]

\[\begin{align*}
\text{Conservation} & \quad \frac{\partial U_i}{\partial x_i} = 0 \quad \rightarrow \quad \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z} = 0 \quad \rightarrow \quad 0 = 0 \\
U &= U(x) \\
\end{align*} \]

\[\begin{align*}
\text{Mom} & \quad \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + W \frac{\partial U}{\partial z} = -\frac{\partial P}{\partial x} + \frac{1}{Re} \nabla^2 U = 0 \\
\end{align*} \]

\[\begin{align*}
\text{Mom} & \quad 0 = -\frac{\partial P}{\partial y} \quad \rightarrow \quad P \neq \text{const of } y \\
\text{Mom} & \quad 0 = -\frac{\partial P}{\partial z} \quad \rightarrow \quad P \neq \text{const of } z \\
\end{align*} \]

\[\begin{align*}
\text{So} & \quad -\frac{\partial P}{\partial x} + \frac{1}{Re} \nabla^2 U = 0 \\
\end{align*} \]

Step 2 All disturbance \[\tilde{U} = U + U' \]

\[\begin{align*}
\tilde{U} = U + U' \\
\tilde{V} = 0 + V' \\
\tilde{W} = 0 + W' \\
\tilde{P} = P + p' \\
\end{align*} \]

Plug these into (1a) & (1b) to get (2a) & (2b)
1. Problem Setup:
Consider an incompressible, locally parallel flow with some known steady basic state \(U(y) \). We examine this problem using linear stability analysis. Note: A boundary layer type of flow is sketched, but the procedure applies to any kind of parallel or nearly parallel flow.

2. Summary of Linear Stability Analysis:
The in-class analysis follows Kundu, Section 12.8 closely, filling in some of the details. Start with the normalized incompressible Navier-Stokes equations for total flow variables (\(\tilde{q} \)) :

\[
\frac{\partial \tilde{u}_i}{\partial x_i} = 0 \quad (1) \text{ and } \frac{\partial \tilde{u}_i}{\partial t} + \tilde{u}_j \frac{\partial \tilde{u}_i}{\partial x_j} = -\frac{\partial \tilde{p}}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 \tilde{u}_i}{\partial x_j \partial x_j} \quad (2) \text{ where } Re \equiv \frac{U_0 L}{\nu} \text{ and } U_0 \text{ and } L \text{ are a characteristic velocity and a characteristic length, respectively. This represents 4 equations and 4 unknowns, nonlinear p.d.e.s.}
\]

- **Step 1.** Start with the basic state (\(Q \)) : \(U = (U(y), 0, 0) \). Continuity yields \(\frac{\partial}{\partial x} = 0 \) (1b). The \(y \) and \(z \) momentum equations show that \(\frac{\partial p}{\partial x} + \frac{1}{Re} \nabla^2 U = 0 \) (2b).

- **Step 2.** Add disturbances (\(\tilde{u} = U + u, \tilde{v} = 0 + v, \tilde{w} = 0 + w, \tilde{p} = P + p \)), and plug them into (1) & (2): This generates the total equations (1t) and (2t).

- **Step 3.** Subtract the basic state equations from the total equations: This generates the disturbance equations (1d) and (2d).

- **Step 4.** Linearize the disturbance equations to generate the linearized disturbance equations \(\frac{\partial \tilde{u}_i}{\partial x_i} = 0 \) (1l) and \(\frac{\partial \tilde{u}_i}{\partial t} + \tilde{u}_j \frac{\partial \tilde{u}_i}{\partial x_j} = -\frac{\partial \tilde{p}}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 \tilde{u}_i}{\partial x_j \partial x_j} \quad (2l). \)

This still represents 4 equations and 4 unknowns, but the equations are now linear. (Note: the disturbance variables are now the unknowns since the basic state is known.) These are still p.d.e.s since \(u, v, w \), and \(p \) are functions of \(x, y, z, t \).

- **Step 5.** Solve the linearized disturbance equations (1l) and (2l): We use the method of normal modes.

Method of Normal Modes: Assume disturbances that are periodic in \(x \) and \(z \), but not growing or decaying in \(x \) or \(z \), and may be periodic and may be growing or decaying in \(t \) (temporal instability.) Specifically, let the disturbances be of the form

\[
u(x,y,z,t) = \tilde{u}(y)e^{i(kx+\zeta z-\omega t)} , \quad v(x,y,z,t) = \tilde{v}(y)e^{i(kx+\zeta z-\omega t)} , \quad w(x,y,z,t) = \tilde{w}(y)e^{i(kx+\zeta z-\omega t)}, \quad p(x,y,z,t) = \tilde{p}(y)e^{i(kx+\zeta z-\omega t)}, \quad \text{and} \quad c = \sqrt{\sigma^2 - \zeta k c}
\]

where variables with hats are complex amplitudes. \(k \) and \(\zeta \) are the \(x \) and \(z \) components, respectively, of wavenumber vector \(\vec{K} \). For temporal stability analysis, both \(k \) and \(\zeta \) must be real, while complex wave speed \(c \) can be complex. (Otherwise spatial instability would also be possible.) Plugging these disturbances into Eqs. (1l) and (2l) to get the normal mode equations:

\[
(ik-c)\tilde{v}_y = -i\tilde{p}_y + \frac{1}{Re} \left[\tilde{\nu}_y - (k^2 + m^2) \tilde{u}\right], \quad (1n)
\]

\[
(ik-c)\tilde{u}_y = i\tilde{\nu}_y - \frac{1}{Re} \left[\tilde{u}_y - (k^2 + m^2) \tilde{v}\right], \quad (2n)
\]

Note: For convenience in Eqs. (1n) and (2n), subscript \(y \) denotes differentiation with respect to \(y \). We are now down to 4 o.d.e.s and 4 unknowns since \(U(y) \) is known, along with its derivatives.

Squire’s Theorem: In 2-D parallel flow, for each unstable 3-D disturbance, there corresponds a more unstable 2-D disturbance. In other words, the most unstable case is the 2-D one: \(m = 0 \) \& \(\tilde{w} = 0 \). The normal mode equations simplify:

\[
(ik-c)\tilde{u}_y = -i\tilde{\nu}_y + \frac{1}{Re} \left[\tilde{u}_y - k^2 \tilde{u}\right], \quad (5)
\]

\[
(ik-c)\tilde{v}_y = -i\tilde{p}_y + \frac{1}{Re} \left[\tilde{v}_y - k^2 \tilde{v}\right], \quad (6)
\]

We are now down to 3 o.d.e.s and 3 unknowns, \(\tilde{u}(y), \tilde{v}(y), \) and \(\tilde{p}(y) \).

Orr-Sommerfeld Equation: Define a disturbance stream function, \(\psi(x,y,t) = \phi(y)e^{i(kx-\omega t)} \) Note: \(\phi(y) \) is not a velocity potential function, but simply the magnitude of the disturbance stream function. Plugging this into Eqs. (4) to (6) yields one o.d.e. and one unknown:

\[
(U-c)(\phi_{yy} - k^2 \phi) - U_{yy} \phi = \frac{1}{ik Re} \left[\phi_{yyyy} - 2k^2 \phi_{yy} + k^4 \phi \right], \quad (7)
\]

Note: The Orr-Sommerfeld equation (to be done in class).
C = complex wave speed \[C = C_r + iC_i \]

For temporal instability analysis, \(k \) and \(m \) are real, but \(C \) may be complex.

Examine \(e^{-ikct} \rightarrow e^{-ikct} \).

\[e = e^{-ikct} e^{kct} \]

\(Cr \) represents the wave propagation speed.

\(Cr \) represents the wave propagation speed (wave is propagating in x-direction).

\(C_r \) determines the wave speed.

\(C_i \) determines the stability.

If \(C_i < 0 \) stable.

If \(C_i > 0 \) unstable.

Oscillating in time (periodic in time).

Represents the growth or decay - the stability of the system.