Today, we will:

- Continue to discuss the turbulent jet
- SRTEs to be conducted during the last 10 minutes of class today

\[\text{C. Turbulent Jets} \]

Recall, \(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0 \) \hspace{1cm} (1)

\[\text{x-mom} \quad U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} = \frac{\partial P}{\partial y} (-U) \] \hspace{1cm} (2)

\[\text{Integral Analysis} \quad 2-D \rightarrow M = \text{mass flux} = \int_0^\infty p U^2 dy = \text{const} \] \hspace{1cm} (2)

\[\text{a} \text{ } \text{M does not vary with } x \]

\[\text{axi} \rightarrow M = \text{mom flux} = \int_0^\infty p U^2 2\pi r dr = \text{const} \] \hspace{1cm} (4)

\[\text{Similarity Solution in the Far Jet} \]

Far enough away, the jet "forgets" everything except \(M \)

No length scale in the problem -> expect similarity solution
MAT: combine \(x, y \) into one variable \(\eta \)

Dim. And. help to define \(\eta \)

we expect \(l = \text{func}(x, \rho, M) \)

Dim. and. \(\xi = \frac{l}{x} \) = only \(\rho \); \(\xi \) = cont.

So, we conclude \(l = \text{const.} x \)

\[\therefore \text{ALL TURBULENT FAR JETS GROW LINEARLY WITH } x \] (both 2-D, i.e., axi)

Let's define \(\eta = \frac{y}{x} \) for 2-D or \(\frac{r}{x} \) for axi

\[l = \text{const.} x \]

So, let \(\eta = \frac{y}{x} \) \((2-D) \) or \(\eta = \frac{r}{x} \) \((a-x) \)

\[\left(\xi = \text{some constant} \right) \]

Consider \(U: \rightarrow \) non-dimensionalize \(U \)

we set \(\frac{U}{U_s} = \text{func}(\eta) \)

better: \(\rightarrow \) set \(F(\eta) = \frac{U}{U_s} \)

For 2-D case: \(M = \int_0^\infty \varphi U^2 dy \)

Assume \(U_s = A x^a \) \(A, a \) are constants
\[U = U_s F' = A \lambda^4 F'(\lambda) \]
\[\eta = 6 \frac{y}{x} \Rightarrow dy = \frac{x}{6} d\eta \]
\[M = \rho \int_{-\infty}^{\infty} U^2 dy
= \rho \int_{-\infty}^{\infty} A^2 x F^2 \left(\frac{x}{6} d\eta \right) = \text{cont.} \]
\[M = \rho \int_{-\infty}^{\infty} A^2 x F^2 \left(\frac{x}{6} d\eta \right) = \text{cont.} \]
\[\therefore 2a + 1 = 0 \Rightarrow a = -\frac{1}{2} \]

Thus, \[U_s = A x^{-\frac{1}{2}} \]
for a 2-D turb. jet.

\[U_s = U_c = \text{catalytic velocity} \]

Self-similar 2-D turbulent jet

We expect for complete self-similarity, both the mean and the turbulent quantities are similar — collapse into same plot in similarity variables.
Terminology for complete similarity → “self-similar”
“self-preservation”
“equilibrium state”
“invariance”

“Canonical” → the jet forgets its origin

Defined only on M

Experiments → mean profiles become similar quickly by \(\left(\frac{x}{d} \approx 50 \right) \)

turb → “farther downstream by \(\left(\frac{x}{d} \approx 70 \right) \)

Turbulence has a “memory” from upstream

Reynolds x-mom eq:

\[

U \frac{dU}{dx} + V \frac{dU}{dy} = \frac{2}{\nu} \left(-\overline{uv} \right)

\]

\(\nu = \frac{y}{x} \) \((y = \text{const}) \)

\(U_j = A x^{-1/2} \)

\(F'(x) = \frac{U}{U_j} = \frac{U}{A \frac{x}{\sqrt{x}} \text{SN}} \)

Plus, we need some model for \(-\overline{uv} \) → can we zero eq.

\(\text{one eq.} \)

\(\text{two eq.} \)

\(\text{three eq.} \)

E.g. Use a simple eddy viscosity-mixing length model (zero eq model)

\[

-\overline{uv} = \nu \frac{dU}{dy}

\]

[PL form of the Bowin\(u' \) eddy viscosity]

Also, for free shear flow,

\(\nu = \text{const} \cdot \chi \)

\(\frac{l}{\chi} \approx \frac{1}{l} = \text{const} \cdot x \)
\[U_e = B \sqrt{x} \]
where \(B \) is some new constant.

\[U_e = \text{constant across the jet (not a func. of } y) \]

but varies with \(x \)

\[-\overline{uv} = B \sqrt{x} \frac{dU}{dy} \]

2-D turb. jet. similarity soln for the far field:

\[\frac{2U}{dx} + \frac{2V}{dy} = 0 \]
(1)

\[\frac{U}{dx} + V \frac{dU}{dy} = 2 \frac{dy}{dx} (-\overline{uv}) \]
(2)

Control vol. and \(\rightarrow U_f = A x^{-\frac{1}{2}} \)

Similarity approx.:

\[\eta = \frac{x}{y} \]

\[F'(\eta) = \frac{U}{U_f} \]

Hey, wind is back!

\[\overline{uv} = B \sqrt{x} \]

\[F'^2 + FF'' + \frac{2B \delta^2}{A} F'' = 0 \]

\[F'''' + 2FF'' + 2F'^2 = 0 \]

* Final similarity eq. = constant (it is arbitrary)

Set the const. = \(\frac{1}{2} \)